Ataques adversarios en sistemas de reconocimiento visual

Irigaray, Diego - Serena, Camila

Supervisor(es): Delbracio, Mauricio - Lezama, José - Moncecchi, Guillermo

Resumen:

En la actualidad, las redes neuronales alcanzan el estado del arte en la mayoría de tareas que emplean técnicas de aprendizaje automático, siendo cada vez más los problemas del mundo real en los cuales se hace uso de este tipo de modelos. Sin embargo, se ha demostrado recientemente que dichas redes son vulnerables a los denominados ejemplos adversarios: datos de entrada que tras ser levemente modificados logran engañar a las redes haciéndolas devolver resultados incorrectos. En este trabajo realizamos un estudio sobre el fenómeno de los ejemplos adversarios, centrándonos para ello en los sistemas de visión artificial. Estudiamos cómo se obtienen dichos ejemplos, qué características presentan y por qué existen, así como algunas de las principales propuestas que buscan mitigar esta vulnerabilidad. Adicionalmente implementamos un framework orientado al desarrollo y evaluación de algoritmos tanto de ataque como de defensa contra ejemplos adversarios, el cual utilizamos para realizar distintos experimentos sobre algunos de los métodos más relevantes propuestos hasta el momento.


Detalles Bibliográficos
2019
Ataques adversarios
Ejemplos adversarios
Redes neuronales
Visión artificial
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/22867
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Resumen:
Sumario:En la actualidad, las redes neuronales alcanzan el estado del arte en la mayoría de tareas que emplean técnicas de aprendizaje automático, siendo cada vez más los problemas del mundo real en los cuales se hace uso de este tipo de modelos. Sin embargo, se ha demostrado recientemente que dichas redes son vulnerables a los denominados ejemplos adversarios: datos de entrada que tras ser levemente modificados logran engañar a las redes haciéndolas devolver resultados incorrectos. En este trabajo realizamos un estudio sobre el fenómeno de los ejemplos adversarios, centrándonos para ello en los sistemas de visión artificial. Estudiamos cómo se obtienen dichos ejemplos, qué características presentan y por qué existen, así como algunas de las principales propuestas que buscan mitigar esta vulnerabilidad. Adicionalmente implementamos un framework orientado al desarrollo y evaluación de algoritmos tanto de ataque como de defensa contra ejemplos adversarios, el cual utilizamos para realizar distintos experimentos sobre algunos de los métodos más relevantes propuestos hasta el momento.