Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data
Resumen:
The technological upgrade of power utilities to smart metering is a process that can take several years. Meanwhile, smart meters coexist with previous generations of digital and electromechanical power meters. While the smart meters provide high-resolution power measurements, electromechanical meters are typically read by an operator once a month. The coexistence of these two technologies poses the challenge of monitoring non-technical losses (NTL) and fraud where some customers’ consumption is sampled every 15 minutes, while others are sampled once a month. In addition, since companies already have years of monthly historical consumption, it is natural to reflect how the past data can be leveraged to predict and improve NTL on smart grids. This work addresses both problems by proposing a multi-resolution deep learning architecture capable of simultaneously training and predicting input consumption curves sampled 1 a month or every 15 minutes. The proposed algorithms are tested on an extensive data set of users with and without fraudulent behaviors collected from the Uruguayan utility company UTE and on a public access data set with synthetic fraud. Results show that the multi-resolution architecture performs better than algorithms trained for a specific type of meters (i.e., for a particular resolution).
2022 | |
Apoyado en parte por la empresa de servicios públicos uruguaya UTE y por la Comisión Académica de Posgrado de la Universidad de la República | |
Feature extraction Smart meters Companie Inspection Energy consumption Deep learning Meters Non-technical losses Electricity theft Automatic fraud detection Multi-resolution Smart meters |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://ieeexplore.ieee.org/document/9702531
https://hdl.handle.net/20.500.12008/34465 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522899521699840 |
---|---|
author | Massaferro Saquieres, Pablo |
author2 | Di Martino, Matías Fernández, Alicia |
author2_role | author author |
author_facet | Massaferro Saquieres, Pablo Di Martino, Matías Fernández, Alicia |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 8aaf517687e327f74ed24ff6fbac173b |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/34465/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/34465/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/34465/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/34465/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/34465/1/MDF22.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Massaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. Di Martino Matías, Duke University, Durham, NC, USA Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.coverage.spatial.es.fl_str_mv | Uruguay |
dc.creator.none.fl_str_mv | Massaferro Saquieres, Pablo Di Martino, Matías Fernández, Alicia |
dc.date.accessioned.none.fl_str_mv | 2022-11-01T12:41:17Z |
dc.date.available.none.fl_str_mv | 2022-11-01T12:41:17Z |
dc.date.issued.none.fl_str_mv | 2022 |
dc.description.abstract.none.fl_txt_mv | The technological upgrade of power utilities to smart metering is a process that can take several years. Meanwhile, smart meters coexist with previous generations of digital and electromechanical power meters. While the smart meters provide high-resolution power measurements, electromechanical meters are typically read by an operator once a month. The coexistence of these two technologies poses the challenge of monitoring non-technical losses (NTL) and fraud where some customers’ consumption is sampled every 15 minutes, while others are sampled once a month. In addition, since companies already have years of monthly historical consumption, it is natural to reflect how the past data can be leveraged to predict and improve NTL on smart grids. This work addresses both problems by proposing a multi-resolution deep learning architecture capable of simultaneously training and predicting input consumption curves sampled 1 a month or every 15 minutes. The proposed algorithms are tested on an extensive data set of users with and without fraudulent behaviors collected from the Uruguayan utility company UTE and on a public access data set with synthetic fraud. Results show that the multi-resolution architecture performs better than algorithms trained for a specific type of meters (i.e., for a particular resolution). |
dc.description.es.fl_txt_mv | Transferencia Tecnológica. Esta publicación surge en el marco del convenio firmado entre la Facultad de Ingeniería y la Administración Nacional de Usinas y Trasmisiones Eléctricas (UTE). Proyecto DAICE: Detector Automático de Irregularidades en Consumos Electricos. La UTE en el Ciclo 2023, obtuvo con DAICE, el primer premio en la categoría Digitalización en los Premios de Innovación de la Comisión de Integración Energética Regional (CIER). https://portal.ute.com.uy/institucional/ute/quienes-somos. Otras noticias relacionadas: https://www.elpais.com.uy/informacion/servicios/ute-anuncio-que-redujo-en-us-45-000-000-la-perdida-por-energia-no-facturada-en-conexiones-irregulares |
dc.description.sponsorship.none.fl_txt_mv | Apoyado en parte por la empresa de servicios públicos uruguaya UTE y por la Comisión Académica de Posgrado de la Universidad de la República |
dc.format.extent.es.fl_str_mv | 9 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Massaferro Saquieres, P., Di Martino, M. y Fernández, A. "Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data" [Versión Aceptada]. Publicado en : IEEE Transactions on Smart Grid, vol. 13, no 3, May 2022, pp. 2381-2389. DOI: 10.1109/TSG.2022.3148817 |
dc.identifier.doi.none.fl_str_mv | 10.1109/TSG.2022.3148817 |
dc.identifier.issn.none.fl_str_mv | 1949-3053 |
dc.identifier.uri.none.fl_str_mv | https://ieeexplore.ieee.org/document/9702531 https://hdl.handle.net/20.500.12008/34465 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | IEEE |
dc.relation.ispartof.es.fl_str_mv | IEEE Transactions on Smart Grid, vol. 13, no 3, May 2022, pp. 2381-2389. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Feature extraction Smart meters Companie Inspection Energy consumption Deep learning Meters Non-technical losses Electricity theft Automatic fraud detection Multi-resolution Smart meters |
dc.title.none.fl_str_mv | Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Transferencia Tecnológica. Esta publicación surge en el marco del convenio firmado entre la Facultad de Ingeniería y la Administración Nacional de Usinas y Trasmisiones Eléctricas (UTE). Proyecto DAICE: Detector Automático de Irregularidades en Consumos Electricos. La UTE en el Ciclo 2023, obtuvo con DAICE, el primer premio en la categoría Digitalización en los Premios de Innovación de la Comisión de Integración Energética Regional (CIER). https://portal.ute.com.uy/institucional/ute/quienes-somos. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_96ca56b77450eacf216522180e8a0f3b |
identifier_str_mv | Massaferro Saquieres, P., Di Martino, M. y Fernández, A. "Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data" [Versión Aceptada]. Publicado en : IEEE Transactions on Smart Grid, vol. 13, no 3, May 2022, pp. 2381-2389. DOI: 10.1109/TSG.2022.3148817 1949-3053 10.1109/TSG.2022.3148817 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/34465 |
publishDate | 2022 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Massaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Di Martino Matías, Duke University, Durham, NC, USAFernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.Uruguay2022-11-01T12:41:17Z2022-11-01T12:41:17Z2022Massaferro Saquieres, P., Di Martino, M. y Fernández, A. "Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data" [Versión Aceptada]. Publicado en : IEEE Transactions on Smart Grid, vol. 13, no 3, May 2022, pp. 2381-2389. DOI: 10.1109/TSG.2022.31488171949-3053https://ieeexplore.ieee.org/document/9702531https://hdl.handle.net/20.500.12008/3446510.1109/TSG.2022.3148817Transferencia Tecnológica. Esta publicación surge en el marco del convenio firmado entre la Facultad de Ingeniería y la Administración Nacional de Usinas y Trasmisiones Eléctricas (UTE). Proyecto DAICE: Detector Automático de Irregularidades en Consumos Electricos. La UTE en el Ciclo 2023, obtuvo con DAICE, el primer premio en la categoría Digitalización en los Premios de Innovación de la Comisión de Integración Energética Regional (CIER). https://portal.ute.com.uy/institucional/ute/quienes-somos.Otras noticias relacionadas: https://www.elpais.com.uy/informacion/servicios/ute-anuncio-que-redujo-en-us-45-000-000-la-perdida-por-energia-no-facturada-en-conexiones-irregularesThe technological upgrade of power utilities to smart metering is a process that can take several years. Meanwhile, smart meters coexist with previous generations of digital and electromechanical power meters. While the smart meters provide high-resolution power measurements, electromechanical meters are typically read by an operator once a month. The coexistence of these two technologies poses the challenge of monitoring non-technical losses (NTL) and fraud where some customers’ consumption is sampled every 15 minutes, while others are sampled once a month. In addition, since companies already have years of monthly historical consumption, it is natural to reflect how the past data can be leveraged to predict and improve NTL on smart grids. This work addresses both problems by proposing a multi-resolution deep learning architecture capable of simultaneously training and predicting input consumption curves sampled 1 a month or every 15 minutes. The proposed algorithms are tested on an extensive data set of users with and without fraudulent behaviors collected from the Uruguayan utility company UTE and on a public access data set with synthetic fraud. Results show that the multi-resolution architecture performs better than algorithms trained for a specific type of meters (i.e., for a particular resolution).Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-10-31T20:00:51Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MDF22.pdf: 2805018 bytes, checksum: 8aaf517687e327f74ed24ff6fbac173b (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-10-31T20:15:50Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MDF22.pdf: 2805018 bytes, checksum: 8aaf517687e327f74ed24ff6fbac173b (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-11-01T12:41:17Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MDF22.pdf: 2805018 bytes, checksum: 8aaf517687e327f74ed24ff6fbac173b (MD5) Previous issue date: 2022Apoyado en parte por la empresa de servicios públicos uruguaya UTE y por la Comisión Académica de Posgrado de la Universidad de la República9 p.application/pdfenengIEEEIEEE Transactions on Smart Grid, vol. 13, no 3, May 2022, pp. 2381-2389.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Feature extractionSmart metersCompanieInspectionEnergy consumptionDeep learningMetersNon-technical lossesElectricity theftAutomatic fraud detectionMulti-resolutionSmart metersFraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption dataArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMassaferro Saquieres, PabloDi Martino, MatíasFernández, AliciaProcesamiento de SeñalesTratamiento de ImágenesLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/34465/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/34465/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/34465/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/34465/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALMDF22.pdfMDF22.pdfapplication/pdf2805018http://localhost:8080/xmlui/bitstream/20.500.12008/34465/1/MDF22.pdf8aaf517687e327f74ed24ff6fbac173bMD5120.500.12008/344652024-07-24 17:25:46.582oai:colibri.udelar.edu.uy:20.500.12008/34465VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:18.305801COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data Massaferro Saquieres, Pablo Feature extraction Smart meters Companie Inspection Energy consumption Deep learning Meters Non-technical losses Electricity theft Automatic fraud detection Multi-resolution Smart meters |
status_str | publishedVersion |
title | Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data |
title_full | Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data |
title_fullStr | Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data |
title_full_unstemmed | Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data |
title_short | Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data |
title_sort | Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data |
topic | Feature extraction Smart meters Companie Inspection Energy consumption Deep learning Meters Non-technical losses Electricity theft Automatic fraud detection Multi-resolution Smart meters |
url | https://ieeexplore.ieee.org/document/9702531 https://hdl.handle.net/20.500.12008/34465 |