Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study

Rocamora, Martín

Supervisor(es): Biscainho, Luiz W. P - Pardo, Álvaro - Jure, Luis

Resumen:

Most of the research conducted on information technologies applied to music has been largely limited to a few mainstream styles of the so-called `Western' music. The resulting tools often do not generalize properly or cannot be easily extended to other music traditions. So, culture-specific approaches have been recently proposed as a way to build richer and more general computational models for music. This thesis work aims at contributing to the computer-aided study of rhythm, with the focus on percussion music and in the search of appropriate solutions from a culture specifc perspective by considering the Afro-Uruguayan candombe drumming as a case study. This is mainly motivated by its challenging rhythmic characteristics, troublesome for most of the existing analysis methods. In this way, it attempts to push ahead the boundaries of current music technologies. The thesis o ers an overview of the historical, social and cultural context in which candombe drumming is embedded, along with a description of the rhythm. One of the specific contributions of the thesis is the creation of annotated datasets of candombe drumming suitable for computational rhythm analysis. Performances were purposely recorded, and received annotations of metrical information, location of onsets, and sections. A dataset of annotated recordings for beat and downbeat tracking was publicly released, and an audio-visual dataset of performances was obtained, which serves both documentary and research purposes. Part of the dissertation focused on the discovery and analysis of rhythmic patterns from audio recordings. A representation in the form of a map of rhythmic patterns based on spectral features was devised. The type of analyses that can be conducted with the proposed methods is illustrated with some experiments. The dissertation also systematically approached (to the best of our knowledge, for the first time) the study and characterization of the micro-rhythmical properties of candombe drumming. The ndings suggest that micro-timing is a structural component of the rhythm, producing a sort of characteristic "swing". The rest of the dissertation was devoted to the automatic inference and tracking of the metric structure from audio recordings. A supervised Bayesian scheme for rhythmic pattern tracking was proposed, of which a software implementation was publicly released. The results give additional evidence of the generalizability of the Bayesian approach to complex rhythms from diferent music traditions. Finally, the downbeat detection task was formulated as a data compression problem. This resulted in a novel method that proved to be e ective for a large part of the dataset and opens up some interesting threads for future research.


La mayoría de la investigación realizada en tecnologías de la información aplicadas a la música se ha limitado en gran medida a algunos estilos particulares de la así llamada música `occidental'. Las herramientas resultantes a menudo no generalizan adecuadamente o no se pueden extender fácilmente a otras tradiciones musicales. Por lo tanto, recientemente se han propuesto enfoques culturalmente específicos como forma de construir modelos computacionales más ricos y más generales. Esta tesis tiene como objetivo contribuir al estudio del ritmo asistido por computadora, desde una perspectiva cultural específica, considerando el candombe Afro-Uruguayo como caso de estudio. Esto está motivado principalmente por sus características rítmicas, problemáticas para la mayoría de los métodos de análisis existentes. Así , intenta superar los límites actuales de estas tecnologías. La tesis ofrece una visión general del contexto histórico, social y cultural en el que el candombe está integrado, junto con una descripción de su ritmo. Una de las contribuciones específicas de la tesis es la creación de conjuntos de datos adecuados para el análisis computacional del ritmo. Se llevaron adelante sesiones de grabación y se generaron anotaciones de información métrica, ubicación de eventos y secciones. Se disponibilizó públicamente un conjunto de grabaciones anotadas para el seguimiento de pulso e inicio de compás, y se generó un registro audiovisual que sirve tanto para fines documentales como de investigación. Parte de la tesis se centró en descubrir y analizar patrones rítmicos a partir de grabaciones de audio. Se diseñó una representación en forma de mapa de patrones rítmicos basada en características espectrales. El tipo de análisis que se puede realizar con los métodos propuestos se ilustra con algunos experimentos. La tesis también abordó de forma sistemática (y por primera vez) el estudio y la caracterización de las propiedades micro rítmicas del candombe. Los resultados sugieren que las micro desviaciones temporales son un componente estructural del ritmo, dando lugar a una especie de "swing" característico. El resto de la tesis se dedicó a la inferencia automática de la estructura métrica a partir de grabaciones de audio. Se propuso un esquema Bayesiano supervisado para el seguimiento de patrones rítmicos, del cual se disponibilizó públicamente una implementación de software. Los resultados dan evidencia adicional de la capacidad de generalización del enfoque Bayesiano a ritmos complejos. Por último, la detección de inicio de compás se formuló como un problema de compresión de datos. Esto resultó en un método novedoso que demostró ser efectivo para una buena parte de los datos y abre varias líneas de investigación.


Detalles Bibliográficos
2018
Música
Modelos computacionales
Candombe Afro Uruguayo
Análisis computacional del ritmo
Inglés
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/18531
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
_version_ 1807522998922510336
author Rocamora, Martín
author_facet Rocamora, Martín
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
4be9eac19bd629bc0d1c9bdffcd52d07
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/18531/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/18531/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/18531/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/18531/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/18531/1/td-mart%C3%ADn+rocamora.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.coverage.spatial.es.fl_str_mv Uruguay
dc.creator.advisor.none.fl_str_mv Biscainho, Luiz W. P
Pardo, Álvaro
Jure, Luis
dc.creator.none.fl_str_mv Rocamora, Martín
dc.date.accessioned.none.fl_str_mv 2018-10-26T20:48:52Z
dc.date.available.none.fl_str_mv 2018-10-26T20:48:52Z
dc.date.issued.none.fl_str_mv 2018
dc.description.abstract.none.fl_txt_mv Most of the research conducted on information technologies applied to music has been largely limited to a few mainstream styles of the so-called `Western' music. The resulting tools often do not generalize properly or cannot be easily extended to other music traditions. So, culture-specific approaches have been recently proposed as a way to build richer and more general computational models for music. This thesis work aims at contributing to the computer-aided study of rhythm, with the focus on percussion music and in the search of appropriate solutions from a culture specifc perspective by considering the Afro-Uruguayan candombe drumming as a case study. This is mainly motivated by its challenging rhythmic characteristics, troublesome for most of the existing analysis methods. In this way, it attempts to push ahead the boundaries of current music technologies. The thesis o ers an overview of the historical, social and cultural context in which candombe drumming is embedded, along with a description of the rhythm. One of the specific contributions of the thesis is the creation of annotated datasets of candombe drumming suitable for computational rhythm analysis. Performances were purposely recorded, and received annotations of metrical information, location of onsets, and sections. A dataset of annotated recordings for beat and downbeat tracking was publicly released, and an audio-visual dataset of performances was obtained, which serves both documentary and research purposes. Part of the dissertation focused on the discovery and analysis of rhythmic patterns from audio recordings. A representation in the form of a map of rhythmic patterns based on spectral features was devised. The type of analyses that can be conducted with the proposed methods is illustrated with some experiments. The dissertation also systematically approached (to the best of our knowledge, for the first time) the study and characterization of the micro-rhythmical properties of candombe drumming. The ndings suggest that micro-timing is a structural component of the rhythm, producing a sort of characteristic "swing". The rest of the dissertation was devoted to the automatic inference and tracking of the metric structure from audio recordings. A supervised Bayesian scheme for rhythmic pattern tracking was proposed, of which a software implementation was publicly released. The results give additional evidence of the generalizability of the Bayesian approach to complex rhythms from diferent music traditions. Finally, the downbeat detection task was formulated as a data compression problem. This resulted in a novel method that proved to be e ective for a large part of the dataset and opens up some interesting threads for future research.
La mayoría de la investigación realizada en tecnologías de la información aplicadas a la música se ha limitado en gran medida a algunos estilos particulares de la así llamada música `occidental'. Las herramientas resultantes a menudo no generalizan adecuadamente o no se pueden extender fácilmente a otras tradiciones musicales. Por lo tanto, recientemente se han propuesto enfoques culturalmente específicos como forma de construir modelos computacionales más ricos y más generales. Esta tesis tiene como objetivo contribuir al estudio del ritmo asistido por computadora, desde una perspectiva cultural específica, considerando el candombe Afro-Uruguayo como caso de estudio. Esto está motivado principalmente por sus características rítmicas, problemáticas para la mayoría de los métodos de análisis existentes. Así , intenta superar los límites actuales de estas tecnologías. La tesis ofrece una visión general del contexto histórico, social y cultural en el que el candombe está integrado, junto con una descripción de su ritmo. Una de las contribuciones específicas de la tesis es la creación de conjuntos de datos adecuados para el análisis computacional del ritmo. Se llevaron adelante sesiones de grabación y se generaron anotaciones de información métrica, ubicación de eventos y secciones. Se disponibilizó públicamente un conjunto de grabaciones anotadas para el seguimiento de pulso e inicio de compás, y se generó un registro audiovisual que sirve tanto para fines documentales como de investigación. Parte de la tesis se centró en descubrir y analizar patrones rítmicos a partir de grabaciones de audio. Se diseñó una representación en forma de mapa de patrones rítmicos basada en características espectrales. El tipo de análisis que se puede realizar con los métodos propuestos se ilustra con algunos experimentos. La tesis también abordó de forma sistemática (y por primera vez) el estudio y la caracterización de las propiedades micro rítmicas del candombe. Los resultados sugieren que las micro desviaciones temporales son un componente estructural del ritmo, dando lugar a una especie de "swing" característico. El resto de la tesis se dedicó a la inferencia automática de la estructura métrica a partir de grabaciones de audio. Se propuso un esquema Bayesiano supervisado para el seguimiento de patrones rítmicos, del cual se disponibilizó públicamente una implementación de software. Los resultados dan evidencia adicional de la capacidad de generalización del enfoque Bayesiano a ritmos complejos. Por último, la detección de inicio de compás se formuló como un problema de compresión de datos. Esto resultó en un método novedoso que demostró ser efectivo para una buena parte de los datos y abre varias líneas de investigación.
dc.format.extent.es.fl_str_mv 208 h.
dc.format.mimetype.en.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Rocamora, M. Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study [en línea] Tesis de doctorado. Universidad de la República (Uruguay). Facultad de Ingeniería, 2018
dc.identifier.issn.none.fl_str_mv 1688-2784
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/18531
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv UR.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.other.es.fl_str_mv Música
Modelos computacionales
Candombe Afro Uruguayo
Análisis computacional del ritmo
dc.title.none.fl_str_mv Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Most of the research conducted on information technologies applied to music has been largely limited to a few mainstream styles of the so-called `Western' music. The resulting tools often do not generalize properly or cannot be easily extended to other music traditions. So, culture-specific approaches have been recently proposed as a way to build richer and more general computational models for music. This thesis work aims at contributing to the computer-aided study of rhythm, with the focus on percussion music and in the search of appropriate solutions from a culture specifc perspective by considering the Afro-Uruguayan candombe drumming as a case study. This is mainly motivated by its challenging rhythmic characteristics, troublesome for most of the existing analysis methods. In this way, it attempts to push ahead the boundaries of current music technologies. The thesis o ers an overview of the historical, social and cultural context in which candombe drumming is embedded, along with a description of the rhythm. One of the specific contributions of the thesis is the creation of annotated datasets of candombe drumming suitable for computational rhythm analysis. Performances were purposely recorded, and received annotations of metrical information, location of onsets, and sections. A dataset of annotated recordings for beat and downbeat tracking was publicly released, and an audio-visual dataset of performances was obtained, which serves both documentary and research purposes. Part of the dissertation focused on the discovery and analysis of rhythmic patterns from audio recordings. A representation in the form of a map of rhythmic patterns based on spectral features was devised. The type of analyses that can be conducted with the proposed methods is illustrated with some experiments. The dissertation also systematically approached (to the best of our knowledge, for the first time) the study and characterization of the micro-rhythmical properties of candombe drumming. The ndings suggest that micro-timing is a structural component of the rhythm, producing a sort of characteristic "swing". The rest of the dissertation was devoted to the automatic inference and tracking of the metric structure from audio recordings. A supervised Bayesian scheme for rhythmic pattern tracking was proposed, of which a software implementation was publicly released. The results give additional evidence of the generalizability of the Bayesian approach to complex rhythms from diferent music traditions. Finally, the downbeat detection task was formulated as a data compression problem. This resulted in a novel method that proved to be e ective for a large part of the dataset and opens up some interesting threads for future research.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_92d854396b8808d7f3714f581a338be2
identifier_str_mv Rocamora, M. Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study [en línea] Tesis de doctorado. Universidad de la República (Uruguay). Facultad de Ingeniería, 2018
1688-2784
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/18531
publishDate 2018
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
spelling Rocamora Martín, Universidad de la República (Uruguay). Facultad de IngenieríaUruguay2018-10-26T20:48:52Z2018-10-26T20:48:52Z2018Rocamora, M. Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study [en línea] Tesis de doctorado. Universidad de la República (Uruguay). Facultad de Ingeniería, 20181688-2784http://hdl.handle.net/20.500.12008/18531Most of the research conducted on information technologies applied to music has been largely limited to a few mainstream styles of the so-called `Western' music. The resulting tools often do not generalize properly or cannot be easily extended to other music traditions. So, culture-specific approaches have been recently proposed as a way to build richer and more general computational models for music. This thesis work aims at contributing to the computer-aided study of rhythm, with the focus on percussion music and in the search of appropriate solutions from a culture specifc perspective by considering the Afro-Uruguayan candombe drumming as a case study. This is mainly motivated by its challenging rhythmic characteristics, troublesome for most of the existing analysis methods. In this way, it attempts to push ahead the boundaries of current music technologies. The thesis o ers an overview of the historical, social and cultural context in which candombe drumming is embedded, along with a description of the rhythm. One of the specific contributions of the thesis is the creation of annotated datasets of candombe drumming suitable for computational rhythm analysis. Performances were purposely recorded, and received annotations of metrical information, location of onsets, and sections. A dataset of annotated recordings for beat and downbeat tracking was publicly released, and an audio-visual dataset of performances was obtained, which serves both documentary and research purposes. Part of the dissertation focused on the discovery and analysis of rhythmic patterns from audio recordings. A representation in the form of a map of rhythmic patterns based on spectral features was devised. The type of analyses that can be conducted with the proposed methods is illustrated with some experiments. The dissertation also systematically approached (to the best of our knowledge, for the first time) the study and characterization of the micro-rhythmical properties of candombe drumming. The ndings suggest that micro-timing is a structural component of the rhythm, producing a sort of characteristic "swing". The rest of the dissertation was devoted to the automatic inference and tracking of the metric structure from audio recordings. A supervised Bayesian scheme for rhythmic pattern tracking was proposed, of which a software implementation was publicly released. The results give additional evidence of the generalizability of the Bayesian approach to complex rhythms from diferent music traditions. Finally, the downbeat detection task was formulated as a data compression problem. This resulted in a novel method that proved to be e ective for a large part of the dataset and opens up some interesting threads for future research.La mayoría de la investigación realizada en tecnologías de la información aplicadas a la música se ha limitado en gran medida a algunos estilos particulares de la así llamada música `occidental'. Las herramientas resultantes a menudo no generalizan adecuadamente o no se pueden extender fácilmente a otras tradiciones musicales. Por lo tanto, recientemente se han propuesto enfoques culturalmente específicos como forma de construir modelos computacionales más ricos y más generales. Esta tesis tiene como objetivo contribuir al estudio del ritmo asistido por computadora, desde una perspectiva cultural específica, considerando el candombe Afro-Uruguayo como caso de estudio. Esto está motivado principalmente por sus características rítmicas, problemáticas para la mayoría de los métodos de análisis existentes. Así , intenta superar los límites actuales de estas tecnologías. La tesis ofrece una visión general del contexto histórico, social y cultural en el que el candombe está integrado, junto con una descripción de su ritmo. Una de las contribuciones específicas de la tesis es la creación de conjuntos de datos adecuados para el análisis computacional del ritmo. Se llevaron adelante sesiones de grabación y se generaron anotaciones de información métrica, ubicación de eventos y secciones. Se disponibilizó públicamente un conjunto de grabaciones anotadas para el seguimiento de pulso e inicio de compás, y se generó un registro audiovisual que sirve tanto para fines documentales como de investigación. Parte de la tesis se centró en descubrir y analizar patrones rítmicos a partir de grabaciones de audio. Se diseñó una representación en forma de mapa de patrones rítmicos basada en características espectrales. El tipo de análisis que se puede realizar con los métodos propuestos se ilustra con algunos experimentos. La tesis también abordó de forma sistemática (y por primera vez) el estudio y la caracterización de las propiedades micro rítmicas del candombe. Los resultados sugieren que las micro desviaciones temporales son un componente estructural del ritmo, dando lugar a una especie de "swing" característico. El resto de la tesis se dedicó a la inferencia automática de la estructura métrica a partir de grabaciones de audio. Se propuso un esquema Bayesiano supervisado para el seguimiento de patrones rítmicos, del cual se disponibilizó públicamente una implementación de software. Los resultados dan evidencia adicional de la capacidad de generalización del enfoque Bayesiano a ritmos complejos. Por último, la detección de inicio de compás se formuló como un problema de compresión de datos. Esto resultó en un método novedoso que demostró ser efectivo para una buena parte de los datos y abre varias líneas de investigación.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2018-10-26T20:48:52Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) td-martín rocamora.pdf: 19719659 bytes, checksum: 4be9eac19bd629bc0d1c9bdffcd52d07 (MD5)Made available in DSpace on 2018-10-26T20:48:52Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) td-martín rocamora.pdf: 19719659 bytes, checksum: 4be9eac19bd629bc0d1c9bdffcd52d07 (MD5) Previous issue date: 2018208 h.application/pdfenengUR.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)MúsicaModelos computacionalesCandombe Afro UruguayoAnálisis computacional del ritmoComputational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case studyTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaRocamora, MartínBiscainho, Luiz W. PPardo, ÁlvaroJure, LuisUniversidad de la República (Uruguay). Facultad de IngenieríaDoctor en Ingeniería EléctricaProcesamiento de SeñalesProcesamiento de AudioLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/18531/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/18531/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/18531/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/18531/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALtd-martín rocamora.pdftd-martín rocamora.pdfapplication/pdf19719659http://localhost:8080/xmlui/bitstream/20.500.12008/18531/1/td-mart%C3%ADn+rocamora.pdf4be9eac19bd629bc0d1c9bdffcd52d07MD5120.500.12008/185312024-07-29 17:06:11.019oai:colibri.udelar.edu.uy:20.500.12008/18531VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-08-13T03:01:05.531522COLIBRI - Universidad de la Repúblicafalse
spellingShingle Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study
Rocamora, Martín
Música
Modelos computacionales
Candombe Afro Uruguayo
Análisis computacional del ritmo
status_str acceptedVersion
title Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study
title_full Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study
title_fullStr Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study
title_full_unstemmed Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study
title_short Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study
title_sort Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study
topic Música
Modelos computacionales
Candombe Afro Uruguayo
Análisis computacional del ritmo
url http://hdl.handle.net/20.500.12008/18531