Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study
Supervisor(es): Biscainho, Luiz W. P - Pardo, Álvaro - Jure, Luis
Resumen:
Most of the research conducted on information technologies applied to music has been largely limited to a few mainstream styles of the so-called `Western' music. The resulting tools often do not generalize properly or cannot be easily extended to other music traditions. So, culture-specific approaches have been recently proposed as a way to build richer and more general computational models for music. This thesis work aims at contributing to the computer-aided study of rhythm, with the focus on percussion music and in the search of appropriate solutions from a culture specifc perspective by considering the Afro-Uruguayan candombe drumming as a case study. This is mainly motivated by its challenging rhythmic characteristics, troublesome for most of the existing analysis methods. In this way, it attempts to push ahead the boundaries of current music technologies. The thesis o ers an overview of the historical, social and cultural context in which candombe drumming is embedded, along with a description of the rhythm. One of the specific contributions of the thesis is the creation of annotated datasets of candombe drumming suitable for computational rhythm analysis. Performances were purposely recorded, and received annotations of metrical information, location of onsets, and sections. A dataset of annotated recordings for beat and downbeat tracking was publicly released, and an audio-visual dataset of performances was obtained, which serves both documentary and research purposes. Part of the dissertation focused on the discovery and analysis of rhythmic patterns from audio recordings. A representation in the form of a map of rhythmic patterns based on spectral features was devised. The type of analyses that can be conducted with the proposed methods is illustrated with some experiments. The dissertation also systematically approached (to the best of our knowledge, for the first time) the study and characterization of the micro-rhythmical properties of candombe drumming. The ndings suggest that micro-timing is a structural component of the rhythm, producing a sort of characteristic "swing". The rest of the dissertation was devoted to the automatic inference and tracking of the metric structure from audio recordings. A supervised Bayesian scheme for rhythmic pattern tracking was proposed, of which a software implementation was publicly released. The results give additional evidence of the generalizability of the Bayesian approach to complex rhythms from diferent music traditions. Finally, the downbeat detection task was formulated as a data compression problem. This resulted in a novel method that proved to be e ective for a large part of the dataset and opens up some interesting threads for future research.
La mayoría de la investigación realizada en tecnologías de la información aplicadas a la música se ha limitado en gran medida a algunos estilos particulares de la así llamada música `occidental'. Las herramientas resultantes a menudo no generalizan adecuadamente o no se pueden extender fácilmente a otras tradiciones musicales. Por lo tanto, recientemente se han propuesto enfoques culturalmente específicos como forma de construir modelos computacionales más ricos y más generales. Esta tesis tiene como objetivo contribuir al estudio del ritmo asistido por computadora, desde una perspectiva cultural específica, considerando el candombe Afro-Uruguayo como caso de estudio. Esto está motivado principalmente por sus características rítmicas, problemáticas para la mayoría de los métodos de análisis existentes. Así , intenta superar los límites actuales de estas tecnologías. La tesis ofrece una visión general del contexto histórico, social y cultural en el que el candombe está integrado, junto con una descripción de su ritmo. Una de las contribuciones específicas de la tesis es la creación de conjuntos de datos adecuados para el análisis computacional del ritmo. Se llevaron adelante sesiones de grabación y se generaron anotaciones de información métrica, ubicación de eventos y secciones. Se disponibilizó públicamente un conjunto de grabaciones anotadas para el seguimiento de pulso e inicio de compás, y se generó un registro audiovisual que sirve tanto para fines documentales como de investigación. Parte de la tesis se centró en descubrir y analizar patrones rítmicos a partir de grabaciones de audio. Se diseñó una representación en forma de mapa de patrones rítmicos basada en características espectrales. El tipo de análisis que se puede realizar con los métodos propuestos se ilustra con algunos experimentos. La tesis también abordó de forma sistemática (y por primera vez) el estudio y la caracterización de las propiedades micro rítmicas del candombe. Los resultados sugieren que las micro desviaciones temporales son un componente estructural del ritmo, dando lugar a una especie de "swing" característico. El resto de la tesis se dedicó a la inferencia automática de la estructura métrica a partir de grabaciones de audio. Se propuso un esquema Bayesiano supervisado para el seguimiento de patrones rítmicos, del cual se disponibilizó públicamente una implementación de software. Los resultados dan evidencia adicional de la capacidad de generalización del enfoque Bayesiano a ritmos complejos. Por último, la detección de inicio de compás se formuló como un problema de compresión de datos. Esto resultó en un método novedoso que demostró ser efectivo para una buena parte de los datos y abre varias líneas de investigación.
2018 | |
Música Modelos computacionales Candombe Afro Uruguayo Análisis computacional del ritmo |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
http://hdl.handle.net/20.500.12008/18531 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
_version_ | 1807522998922510336 |
---|---|
author | Rocamora, Martín |
author_facet | Rocamora, Martín |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 4be9eac19bd629bc0d1c9bdffcd52d07 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/18531/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/18531/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/18531/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/18531/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/18531/1/td-mart%C3%ADn+rocamora.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Rocamora Martín, Universidad de la República (Uruguay). Facultad de Ingeniería |
dc.coverage.spatial.es.fl_str_mv | Uruguay |
dc.creator.advisor.none.fl_str_mv | Biscainho, Luiz W. P Pardo, Álvaro Jure, Luis |
dc.creator.none.fl_str_mv | Rocamora, Martín |
dc.date.accessioned.none.fl_str_mv | 2018-10-26T20:48:52Z |
dc.date.available.none.fl_str_mv | 2018-10-26T20:48:52Z |
dc.date.issued.none.fl_str_mv | 2018 |
dc.description.abstract.none.fl_txt_mv | Most of the research conducted on information technologies applied to music has been largely limited to a few mainstream styles of the so-called `Western' music. The resulting tools often do not generalize properly or cannot be easily extended to other music traditions. So, culture-specific approaches have been recently proposed as a way to build richer and more general computational models for music. This thesis work aims at contributing to the computer-aided study of rhythm, with the focus on percussion music and in the search of appropriate solutions from a culture specifc perspective by considering the Afro-Uruguayan candombe drumming as a case study. This is mainly motivated by its challenging rhythmic characteristics, troublesome for most of the existing analysis methods. In this way, it attempts to push ahead the boundaries of current music technologies. The thesis o ers an overview of the historical, social and cultural context in which candombe drumming is embedded, along with a description of the rhythm. One of the specific contributions of the thesis is the creation of annotated datasets of candombe drumming suitable for computational rhythm analysis. Performances were purposely recorded, and received annotations of metrical information, location of onsets, and sections. A dataset of annotated recordings for beat and downbeat tracking was publicly released, and an audio-visual dataset of performances was obtained, which serves both documentary and research purposes. Part of the dissertation focused on the discovery and analysis of rhythmic patterns from audio recordings. A representation in the form of a map of rhythmic patterns based on spectral features was devised. The type of analyses that can be conducted with the proposed methods is illustrated with some experiments. The dissertation also systematically approached (to the best of our knowledge, for the first time) the study and characterization of the micro-rhythmical properties of candombe drumming. The ndings suggest that micro-timing is a structural component of the rhythm, producing a sort of characteristic "swing". The rest of the dissertation was devoted to the automatic inference and tracking of the metric structure from audio recordings. A supervised Bayesian scheme for rhythmic pattern tracking was proposed, of which a software implementation was publicly released. The results give additional evidence of the generalizability of the Bayesian approach to complex rhythms from diferent music traditions. Finally, the downbeat detection task was formulated as a data compression problem. This resulted in a novel method that proved to be e ective for a large part of the dataset and opens up some interesting threads for future research. La mayoría de la investigación realizada en tecnologías de la información aplicadas a la música se ha limitado en gran medida a algunos estilos particulares de la así llamada música `occidental'. Las herramientas resultantes a menudo no generalizan adecuadamente o no se pueden extender fácilmente a otras tradiciones musicales. Por lo tanto, recientemente se han propuesto enfoques culturalmente específicos como forma de construir modelos computacionales más ricos y más generales. Esta tesis tiene como objetivo contribuir al estudio del ritmo asistido por computadora, desde una perspectiva cultural específica, considerando el candombe Afro-Uruguayo como caso de estudio. Esto está motivado principalmente por sus características rítmicas, problemáticas para la mayoría de los métodos de análisis existentes. Así , intenta superar los límites actuales de estas tecnologías. La tesis ofrece una visión general del contexto histórico, social y cultural en el que el candombe está integrado, junto con una descripción de su ritmo. Una de las contribuciones específicas de la tesis es la creación de conjuntos de datos adecuados para el análisis computacional del ritmo. Se llevaron adelante sesiones de grabación y se generaron anotaciones de información métrica, ubicación de eventos y secciones. Se disponibilizó públicamente un conjunto de grabaciones anotadas para el seguimiento de pulso e inicio de compás, y se generó un registro audiovisual que sirve tanto para fines documentales como de investigación. Parte de la tesis se centró en descubrir y analizar patrones rítmicos a partir de grabaciones de audio. Se diseñó una representación en forma de mapa de patrones rítmicos basada en características espectrales. El tipo de análisis que se puede realizar con los métodos propuestos se ilustra con algunos experimentos. La tesis también abordó de forma sistemática (y por primera vez) el estudio y la caracterización de las propiedades micro rítmicas del candombe. Los resultados sugieren que las micro desviaciones temporales son un componente estructural del ritmo, dando lugar a una especie de "swing" característico. El resto de la tesis se dedicó a la inferencia automática de la estructura métrica a partir de grabaciones de audio. Se propuso un esquema Bayesiano supervisado para el seguimiento de patrones rítmicos, del cual se disponibilizó públicamente una implementación de software. Los resultados dan evidencia adicional de la capacidad de generalización del enfoque Bayesiano a ritmos complejos. Por último, la detección de inicio de compás se formuló como un problema de compresión de datos. Esto resultó en un método novedoso que demostró ser efectivo para una buena parte de los datos y abre varias líneas de investigación. |
dc.format.extent.es.fl_str_mv | 208 h. |
dc.format.mimetype.en.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Rocamora, M. Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study [en línea] Tesis de doctorado. Universidad de la República (Uruguay). Facultad de Ingeniería, 2018 |
dc.identifier.issn.none.fl_str_mv | 1688-2784 |
dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/20.500.12008/18531 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | UR.FI |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.other.es.fl_str_mv | Música Modelos computacionales Candombe Afro Uruguayo Análisis computacional del ritmo |
dc.title.none.fl_str_mv | Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study |
dc.type.es.fl_str_mv | Tesis de doctorado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Most of the research conducted on information technologies applied to music has been largely limited to a few mainstream styles of the so-called `Western' music. The resulting tools often do not generalize properly or cannot be easily extended to other music traditions. So, culture-specific approaches have been recently proposed as a way to build richer and more general computational models for music. This thesis work aims at contributing to the computer-aided study of rhythm, with the focus on percussion music and in the search of appropriate solutions from a culture specifc perspective by considering the Afro-Uruguayan candombe drumming as a case study. This is mainly motivated by its challenging rhythmic characteristics, troublesome for most of the existing analysis methods. In this way, it attempts to push ahead the boundaries of current music technologies. The thesis o ers an overview of the historical, social and cultural context in which candombe drumming is embedded, along with a description of the rhythm. One of the specific contributions of the thesis is the creation of annotated datasets of candombe drumming suitable for computational rhythm analysis. Performances were purposely recorded, and received annotations of metrical information, location of onsets, and sections. A dataset of annotated recordings for beat and downbeat tracking was publicly released, and an audio-visual dataset of performances was obtained, which serves both documentary and research purposes. Part of the dissertation focused on the discovery and analysis of rhythmic patterns from audio recordings. A representation in the form of a map of rhythmic patterns based on spectral features was devised. The type of analyses that can be conducted with the proposed methods is illustrated with some experiments. The dissertation also systematically approached (to the best of our knowledge, for the first time) the study and characterization of the micro-rhythmical properties of candombe drumming. The ndings suggest that micro-timing is a structural component of the rhythm, producing a sort of characteristic "swing". The rest of the dissertation was devoted to the automatic inference and tracking of the metric structure from audio recordings. A supervised Bayesian scheme for rhythmic pattern tracking was proposed, of which a software implementation was publicly released. The results give additional evidence of the generalizability of the Bayesian approach to complex rhythms from diferent music traditions. Finally, the downbeat detection task was formulated as a data compression problem. This resulted in a novel method that proved to be e ective for a large part of the dataset and opens up some interesting threads for future research. |
eu_rights_str_mv | openAccess |
format | doctoralThesis |
id | COLIBRI_92d854396b8808d7f3714f581a338be2 |
identifier_str_mv | Rocamora, M. Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study [en línea] Tesis de doctorado. Universidad de la República (Uruguay). Facultad de Ingeniería, 2018 1688-2784 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/18531 |
publishDate | 2018 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
spelling | Rocamora Martín, Universidad de la República (Uruguay). Facultad de IngenieríaUruguay2018-10-26T20:48:52Z2018-10-26T20:48:52Z2018Rocamora, M. Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study [en línea] Tesis de doctorado. Universidad de la República (Uruguay). Facultad de Ingeniería, 20181688-2784http://hdl.handle.net/20.500.12008/18531Most of the research conducted on information technologies applied to music has been largely limited to a few mainstream styles of the so-called `Western' music. The resulting tools often do not generalize properly or cannot be easily extended to other music traditions. So, culture-specific approaches have been recently proposed as a way to build richer and more general computational models for music. This thesis work aims at contributing to the computer-aided study of rhythm, with the focus on percussion music and in the search of appropriate solutions from a culture specifc perspective by considering the Afro-Uruguayan candombe drumming as a case study. This is mainly motivated by its challenging rhythmic characteristics, troublesome for most of the existing analysis methods. In this way, it attempts to push ahead the boundaries of current music technologies. The thesis o ers an overview of the historical, social and cultural context in which candombe drumming is embedded, along with a description of the rhythm. One of the specific contributions of the thesis is the creation of annotated datasets of candombe drumming suitable for computational rhythm analysis. Performances were purposely recorded, and received annotations of metrical information, location of onsets, and sections. A dataset of annotated recordings for beat and downbeat tracking was publicly released, and an audio-visual dataset of performances was obtained, which serves both documentary and research purposes. Part of the dissertation focused on the discovery and analysis of rhythmic patterns from audio recordings. A representation in the form of a map of rhythmic patterns based on spectral features was devised. The type of analyses that can be conducted with the proposed methods is illustrated with some experiments. The dissertation also systematically approached (to the best of our knowledge, for the first time) the study and characterization of the micro-rhythmical properties of candombe drumming. The ndings suggest that micro-timing is a structural component of the rhythm, producing a sort of characteristic "swing". The rest of the dissertation was devoted to the automatic inference and tracking of the metric structure from audio recordings. A supervised Bayesian scheme for rhythmic pattern tracking was proposed, of which a software implementation was publicly released. The results give additional evidence of the generalizability of the Bayesian approach to complex rhythms from diferent music traditions. Finally, the downbeat detection task was formulated as a data compression problem. This resulted in a novel method that proved to be e ective for a large part of the dataset and opens up some interesting threads for future research.La mayoría de la investigación realizada en tecnologías de la información aplicadas a la música se ha limitado en gran medida a algunos estilos particulares de la así llamada música `occidental'. Las herramientas resultantes a menudo no generalizan adecuadamente o no se pueden extender fácilmente a otras tradiciones musicales. Por lo tanto, recientemente se han propuesto enfoques culturalmente específicos como forma de construir modelos computacionales más ricos y más generales. Esta tesis tiene como objetivo contribuir al estudio del ritmo asistido por computadora, desde una perspectiva cultural específica, considerando el candombe Afro-Uruguayo como caso de estudio. Esto está motivado principalmente por sus características rítmicas, problemáticas para la mayoría de los métodos de análisis existentes. Así , intenta superar los límites actuales de estas tecnologías. La tesis ofrece una visión general del contexto histórico, social y cultural en el que el candombe está integrado, junto con una descripción de su ritmo. Una de las contribuciones específicas de la tesis es la creación de conjuntos de datos adecuados para el análisis computacional del ritmo. Se llevaron adelante sesiones de grabación y se generaron anotaciones de información métrica, ubicación de eventos y secciones. Se disponibilizó públicamente un conjunto de grabaciones anotadas para el seguimiento de pulso e inicio de compás, y se generó un registro audiovisual que sirve tanto para fines documentales como de investigación. Parte de la tesis se centró en descubrir y analizar patrones rítmicos a partir de grabaciones de audio. Se diseñó una representación en forma de mapa de patrones rítmicos basada en características espectrales. El tipo de análisis que se puede realizar con los métodos propuestos se ilustra con algunos experimentos. La tesis también abordó de forma sistemática (y por primera vez) el estudio y la caracterización de las propiedades micro rítmicas del candombe. Los resultados sugieren que las micro desviaciones temporales son un componente estructural del ritmo, dando lugar a una especie de "swing" característico. El resto de la tesis se dedicó a la inferencia automática de la estructura métrica a partir de grabaciones de audio. Se propuso un esquema Bayesiano supervisado para el seguimiento de patrones rítmicos, del cual se disponibilizó públicamente una implementación de software. Los resultados dan evidencia adicional de la capacidad de generalización del enfoque Bayesiano a ritmos complejos. Por último, la detección de inicio de compás se formuló como un problema de compresión de datos. Esto resultó en un método novedoso que demostró ser efectivo para una buena parte de los datos y abre varias líneas de investigación.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2018-10-26T20:48:52Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) td-martín rocamora.pdf: 19719659 bytes, checksum: 4be9eac19bd629bc0d1c9bdffcd52d07 (MD5)Made available in DSpace on 2018-10-26T20:48:52Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) td-martín rocamora.pdf: 19719659 bytes, checksum: 4be9eac19bd629bc0d1c9bdffcd52d07 (MD5) Previous issue date: 2018208 h.application/pdfenengUR.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)MúsicaModelos computacionalesCandombe Afro UruguayoAnálisis computacional del ritmoComputational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case studyTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaRocamora, MartínBiscainho, Luiz W. PPardo, ÁlvaroJure, LuisUniversidad de la República (Uruguay). Facultad de IngenieríaDoctor en Ingeniería EléctricaProcesamiento de SeñalesProcesamiento de AudioLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/18531/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/18531/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/18531/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/18531/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALtd-martín rocamora.pdftd-martín rocamora.pdfapplication/pdf19719659http://localhost:8080/xmlui/bitstream/20.500.12008/18531/1/td-mart%C3%ADn+rocamora.pdf4be9eac19bd629bc0d1c9bdffcd52d07MD5120.500.12008/185312024-07-29 17:06:11.019oai:colibri.udelar.edu.uy:20.500.12008/18531VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-08-13T03:01:05.531522COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study Rocamora, Martín Música Modelos computacionales Candombe Afro Uruguayo Análisis computacional del ritmo |
status_str | acceptedVersion |
title | Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study |
title_full | Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study |
title_fullStr | Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study |
title_full_unstemmed | Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study |
title_short | Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study |
title_sort | Computational methods for percussion music analysis : the afro-uruguayan candombe drumming as a case study |
topic | Música Modelos computacionales Candombe Afro Uruguayo Análisis computacional del ritmo |
url | http://hdl.handle.net/20.500.12008/18531 |