NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal.

Clivio, Alejandra - Porcile, Leandro - Rossi, Victoria

Supervisor(es): Barboni, Leonardo

Resumen:

En este proyecto se presenta el diseño de un circuito integrado en silicio que simula el comportamiento eléctrico de una neurona, lo que que se traduce en imitar los disparos de la tensión de membrana ante una corriente externa. Particularmente se buscó imitar el comportamiento de las neuronas corticales excitatorias. El diseño se basó en el modelo matemático de Eugene Izhikevich que describe de una forma simplificada el comportamiento de una neurona excitatoria, en función de dos variables de estado (potencial de membrana de neurona y variable de recuperación) y parámetros particulares de las neuronas a simular. Se utilizó tecnología FDSOI de 28nm para realizar el diseño y se realizaron simulaciones del circuito diseñado en el software Cadence. En las simulaciones se observó que se logró reproducir de forma aceptable el comportamiento de una neurona excitatoria cortical del tipo RS, pero se concluye que otros tipos de comportamiento no pueden ser simulados por el circuito implementado. Para el caso del comportamiento RS, los valores máximos y mínimos de los picos de acción potencial estuvieron dentro de lo esperado, no así la frecuencia entre picos que presenta una gran diferencia comparado con los valores teóricos, queda pendiente encontrar y solucionar el motivo de esta diferencia.


Detalles Bibliográficos
2023
Redes
Circuitos
Modelos matemáticos
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/39245
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523106242166784
author Clivio, Alejandra
author2 Porcile, Leandro
Rossi, Victoria
author2_role author
author
author_facet Clivio, Alejandra
Porcile, Leandro
Rossi, Victoria
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
1df05be915d5c44b48b8b2e7a082b91a
1996b8461bc290aef6a27d78c67b6b52
b7018b95074ae5d8790c239a6c2f9d53
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/39245/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/39245/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/39245/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/39245/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/39245/1/CPR23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Clivio Alejandra, Universidad de la República (Uruguay). Facultad de Ingeniería.
Porcile Leandro, Universidad de la República (Uruguay). Facultad de Ingeniería.
Rossi Victoria, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Barboni, Leonardo
dc.creator.none.fl_str_mv Clivio, Alejandra
Porcile, Leandro
Rossi, Victoria
dc.date.accessioned.none.fl_str_mv 2023-08-14T17:56:31Z
dc.date.available.none.fl_str_mv 2023-08-14T17:56:31Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv En este proyecto se presenta el diseño de un circuito integrado en silicio que simula el comportamiento eléctrico de una neurona, lo que que se traduce en imitar los disparos de la tensión de membrana ante una corriente externa. Particularmente se buscó imitar el comportamiento de las neuronas corticales excitatorias. El diseño se basó en el modelo matemático de Eugene Izhikevich que describe de una forma simplificada el comportamiento de una neurona excitatoria, en función de dos variables de estado (potencial de membrana de neurona y variable de recuperación) y parámetros particulares de las neuronas a simular. Se utilizó tecnología FDSOI de 28nm para realizar el diseño y se realizaron simulaciones del circuito diseñado en el software Cadence. En las simulaciones se observó que se logró reproducir de forma aceptable el comportamiento de una neurona excitatoria cortical del tipo RS, pero se concluye que otros tipos de comportamiento no pueden ser simulados por el circuito implementado. Para el caso del comportamiento RS, los valores máximos y mínimos de los picos de acción potencial estuvieron dentro de lo esperado, no así la frecuencia entre picos que presenta una gran diferencia comparado con los valores teóricos, queda pendiente encontrar y solucionar el motivo de esta diferencia.
dc.format.extent.es.fl_str_mv 70 p,
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Clivio, A., Porcile, L. y Rossi, V. NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2023.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/39245
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar. FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.other.es.fl_str_mv Redes
Circuitos
Modelos matemáticos
dc.title.none.fl_str_mv NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal.
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description En este proyecto se presenta el diseño de un circuito integrado en silicio que simula el comportamiento eléctrico de una neurona, lo que que se traduce en imitar los disparos de la tensión de membrana ante una corriente externa. Particularmente se buscó imitar el comportamiento de las neuronas corticales excitatorias. El diseño se basó en el modelo matemático de Eugene Izhikevich que describe de una forma simplificada el comportamiento de una neurona excitatoria, en función de dos variables de estado (potencial de membrana de neurona y variable de recuperación) y parámetros particulares de las neuronas a simular. Se utilizó tecnología FDSOI de 28nm para realizar el diseño y se realizaron simulaciones del circuito diseñado en el software Cadence. En las simulaciones se observó que se logró reproducir de forma aceptable el comportamiento de una neurona excitatoria cortical del tipo RS, pero se concluye que otros tipos de comportamiento no pueden ser simulados por el circuito implementado. Para el caso del comportamiento RS, los valores máximos y mínimos de los picos de acción potencial estuvieron dentro de lo esperado, no así la frecuencia entre picos que presenta una gran diferencia comparado con los valores teóricos, queda pendiente encontrar y solucionar el motivo de esta diferencia.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_92cba77b51dcbbcdd8bff73e3df389a1
identifier_str_mv Clivio, A., Porcile, L. y Rossi, V. NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2023.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/39245
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Clivio Alejandra, Universidad de la República (Uruguay). Facultad de Ingeniería.Porcile Leandro, Universidad de la República (Uruguay). Facultad de Ingeniería.Rossi Victoria, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-08-14T17:56:31Z2023-08-14T17:56:31Z2023Clivio, A., Porcile, L. y Rossi, V. NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2023.https://hdl.handle.net/20.500.12008/39245En este proyecto se presenta el diseño de un circuito integrado en silicio que simula el comportamiento eléctrico de una neurona, lo que que se traduce en imitar los disparos de la tensión de membrana ante una corriente externa. Particularmente se buscó imitar el comportamiento de las neuronas corticales excitatorias. El diseño se basó en el modelo matemático de Eugene Izhikevich que describe de una forma simplificada el comportamiento de una neurona excitatoria, en función de dos variables de estado (potencial de membrana de neurona y variable de recuperación) y parámetros particulares de las neuronas a simular. Se utilizó tecnología FDSOI de 28nm para realizar el diseño y se realizaron simulaciones del circuito diseñado en el software Cadence. En las simulaciones se observó que se logró reproducir de forma aceptable el comportamiento de una neurona excitatoria cortical del tipo RS, pero se concluye que otros tipos de comportamiento no pueden ser simulados por el circuito implementado. Para el caso del comportamiento RS, los valores máximos y mínimos de los picos de acción potencial estuvieron dentro de lo esperado, no así la frecuencia entre picos que presenta una gran diferencia comparado con los valores teóricos, queda pendiente encontrar y solucionar el motivo de esta diferencia.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-08-08T21:46:48Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CPR23.pdf: 10800498 bytes, checksum: b7018b95074ae5d8790c239a6c2f9d53 (MD5)Approved for entry into archive by Berón Cecilia (cberon@fing.edu.uy) on 2023-08-14T17:39:11Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CPR23.pdf: 10800498 bytes, checksum: b7018b95074ae5d8790c239a6c2f9d53 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-08-14T17:56:31Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CPR23.pdf: 10800498 bytes, checksum: b7018b95074ae5d8790c239a6c2f9d53 (MD5) Previous issue date: 202370 p,application/pdfesspaUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)RedesCircuitosModelos matemáticosNeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal.Tesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaClivio, AlejandraPorcile, LeandroRossi, VictoriaBarboni, LeonardoUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero Electricista.LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/39245/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/39245/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838767http://localhost:8080/xmlui/bitstream/20.500.12008/39245/3/license_text1df05be915d5c44b48b8b2e7a082b91aMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/39245/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALCPR23.pdfCPR23.pdfapplication/pdf10800498http://localhost:8080/xmlui/bitstream/20.500.12008/39245/1/CPR23.pdfb7018b95074ae5d8790c239a6c2f9d53MD5120.500.12008/392452024-04-12 14:05:07.052oai:colibri.udelar.edu.uy:20.500.12008/39245VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:40:54.263778COLIBRI - Universidad de la Repúblicafalse
spellingShingle NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal.
Clivio, Alejandra
Redes
Circuitos
Modelos matemáticos
status_str acceptedVersion
title NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal.
title_full NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal.
title_fullStr NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal.
title_full_unstemmed NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal.
title_short NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal.
title_sort NeuroMos : Diseño de circuito integrado que simula el comportamiento eléctrico neuronal.
topic Redes
Circuitos
Modelos matemáticos
url https://hdl.handle.net/20.500.12008/39245