Markets as ecological networks: inferring interactions and identifying communities

Emary, Clive - Fort, Hugo

Resumen:

Financial markets are paradigmatic examples of complex systems and have been compared to ecological networks in which different species (firms) interact and co-evolve. A central object governing species dynamics in ecology is the community matrix, whose elements are closely related to pairwise interspecific interaction coefficients. Using this ecological analogy we propose a method, based on the Maximum Entropy (MaxEnt) principle, that allows us to infer candidates for an economic community matrix from time series data of market values. To assess the usefulness of this picture, we construct community matrices for a set of companies belonging to the Fortune 500 list and perform a community analysis on the resultant networks. This analysis shows these networks to strongly reflect the known industry groupings of the firms. We conclude therefore that our community matrices capture non-trivial information about the interaction of firms, not immediately apparent from the covariance of market values. We anticipate our approach being useful in elucidating further aspects of market structure, as well as forming the basis of forecasting market dynamics.


Detalles Bibliográficos
2021
MaxEnt
Business ecosystem
Eecological networks
Community detection
Modularity
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/34239
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
_version_ 1807522794342187008
author Emary, Clive
author2 Fort, Hugo
author2_role author
author_facet Emary, Clive
Fort, Hugo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a0ebbeafb9d2ec7cbb19d7137ebc392c
d606c60c5d78967c4ed7a729e5bb402f
9fdbed07f52437945402c4e70fa4773e
5293d945e4c583ed581a6f9634f123cc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/34239/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/34239/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/34239/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/34239/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/34239/1/101093comnetcnab022.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Emary Clive
Fort Hugo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.
dc.creator.none.fl_str_mv Emary, Clive
Fort, Hugo
dc.date.accessioned.none.fl_str_mv 2022-10-18T19:39:37Z
dc.date.available.none.fl_str_mv 2022-10-18T19:39:37Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv Financial markets are paradigmatic examples of complex systems and have been compared to ecological networks in which different species (firms) interact and co-evolve. A central object governing species dynamics in ecology is the community matrix, whose elements are closely related to pairwise interspecific interaction coefficients. Using this ecological analogy we propose a method, based on the Maximum Entropy (MaxEnt) principle, that allows us to infer candidates for an economic community matrix from time series data of market values. To assess the usefulness of this picture, we construct community matrices for a set of companies belonging to the Fortune 500 list and perform a community analysis on the resultant networks. This analysis shows these networks to strongly reflect the known industry groupings of the firms. We conclude therefore that our community matrices capture non-trivial information about the interaction of firms, not immediately apparent from the covariance of market values. We anticipate our approach being useful in elucidating further aspects of market structure, as well as forming the basis of forecasting market dynamics.
dc.format.extent.es.fl_str_mv 17 h
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Emary, C y Fort, H. "Markets as ecological networks: inferring interactions and identifying communities". Journal of Complex Networks. [en línea] 2021, 9(2): cnab022. 17 h. DOI: 10.1093/comnet/cnab022.
dc.identifier.doi.none.fl_str_mv 10.1093/comnet/cnab022
dc.identifier.issn.none.fl_str_mv 2051-1329
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/34239
dc.language.iso.none.fl_str_mv en_US
eng
dc.relation.ispartof.es.fl_str_mv Journal of Complex Networks, 2021, 9(2): cnab022.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv MaxEnt
Business ecosystem
Eecological networks
Community detection
Modularity
dc.title.none.fl_str_mv Markets as ecological networks: inferring interactions and identifying communities
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Financial markets are paradigmatic examples of complex systems and have been compared to ecological networks in which different species (firms) interact and co-evolve. A central object governing species dynamics in ecology is the community matrix, whose elements are closely related to pairwise interspecific interaction coefficients. Using this ecological analogy we propose a method, based on the Maximum Entropy (MaxEnt) principle, that allows us to infer candidates for an economic community matrix from time series data of market values. To assess the usefulness of this picture, we construct community matrices for a set of companies belonging to the Fortune 500 list and perform a community analysis on the resultant networks. This analysis shows these networks to strongly reflect the known industry groupings of the firms. We conclude therefore that our community matrices capture non-trivial information about the interaction of firms, not immediately apparent from the covariance of market values. We anticipate our approach being useful in elucidating further aspects of market structure, as well as forming the basis of forecasting market dynamics.
eu_rights_str_mv openAccess
format article
id COLIBRI_920a250ebe5c51965e52a6f1c0706452
identifier_str_mv Emary, C y Fort, H. "Markets as ecological networks: inferring interactions and identifying communities". Journal of Complex Networks. [en línea] 2021, 9(2): cnab022. 17 h. DOI: 10.1093/comnet/cnab022.
2051-1329
10.1093/comnet/cnab022
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en_US
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/34239
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
spelling Emary CliveFort Hugo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.2022-10-18T19:39:37Z2022-10-18T19:39:37Z2021Emary, C y Fort, H. "Markets as ecological networks: inferring interactions and identifying communities". Journal of Complex Networks. [en línea] 2021, 9(2): cnab022. 17 h. DOI: 10.1093/comnet/cnab022.2051-1329https://hdl.handle.net/20.500.12008/3423910.1093/comnet/cnab022Financial markets are paradigmatic examples of complex systems and have been compared to ecological networks in which different species (firms) interact and co-evolve. A central object governing species dynamics in ecology is the community matrix, whose elements are closely related to pairwise interspecific interaction coefficients. Using this ecological analogy we propose a method, based on the Maximum Entropy (MaxEnt) principle, that allows us to infer candidates for an economic community matrix from time series data of market values. To assess the usefulness of this picture, we construct community matrices for a set of companies belonging to the Fortune 500 list and perform a community analysis on the resultant networks. This analysis shows these networks to strongly reflect the known industry groupings of the firms. We conclude therefore that our community matrices capture non-trivial information about the interaction of firms, not immediately apparent from the covariance of market values. We anticipate our approach being useful in elucidating further aspects of market structure, as well as forming the basis of forecasting market dynamics.Submitted by Parodi Mónica (mparodi@fcien.edu.uy) on 2022-10-18T14:51:09Z No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 101093comnetcnab022.pdf: 1021090 bytes, checksum: 5293d945e4c583ed581a6f9634f123cc (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2022-10-18T17:24:47Z (GMT) No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 101093comnetcnab022.pdf: 1021090 bytes, checksum: 5293d945e4c583ed581a6f9634f123cc (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-10-18T19:39:37Z (GMT). No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 101093comnetcnab022.pdf: 1021090 bytes, checksum: 5293d945e4c583ed581a6f9634f123cc (MD5) Previous issue date: 202117 happlication/pdfen_USengJournal of Complex Networks, 2021, 9(2): cnab022.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)MaxEntBusiness ecosystemEecological networksCommunity detectionModularityMarkets as ecological networks: inferring interactions and identifying communitiesArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaEmary, CliveFort, HugoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/34239/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/34239/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-838395http://localhost:8080/xmlui/bitstream/20.500.12008/34239/3/license_textd606c60c5d78967c4ed7a729e5bb402fMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-819875http://localhost:8080/xmlui/bitstream/20.500.12008/34239/4/license_rdf9fdbed07f52437945402c4e70fa4773eMD54ORIGINAL101093comnetcnab022.pdf101093comnetcnab022.pdfapplication/pdf1021090http://localhost:8080/xmlui/bitstream/20.500.12008/34239/1/101093comnetcnab022.pdf5293d945e4c583ed581a6f9634f123ccMD5120.500.12008/342392022-10-18 16:39:37.227oai:colibri.udelar.edu.uy:20.500.12008/34239VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:28:50.450598COLIBRI - Universidad de la Repúblicafalse
spellingShingle Markets as ecological networks: inferring interactions and identifying communities
Emary, Clive
MaxEnt
Business ecosystem
Eecological networks
Community detection
Modularity
status_str publishedVersion
title Markets as ecological networks: inferring interactions and identifying communities
title_full Markets as ecological networks: inferring interactions and identifying communities
title_fullStr Markets as ecological networks: inferring interactions and identifying communities
title_full_unstemmed Markets as ecological networks: inferring interactions and identifying communities
title_short Markets as ecological networks: inferring interactions and identifying communities
title_sort Markets as ecological networks: inferring interactions and identifying communities
topic MaxEnt
Business ecosystem
Eecological networks
Community detection
Modularity
url https://hdl.handle.net/20.500.12008/34239