Markets as ecological networks: inferring interactions and identifying communities
Resumen:
Financial markets are paradigmatic examples of complex systems and have been compared to ecological networks in which different species (firms) interact and co-evolve. A central object governing species dynamics in ecology is the community matrix, whose elements are closely related to pairwise interspecific interaction coefficients. Using this ecological analogy we propose a method, based on the Maximum Entropy (MaxEnt) principle, that allows us to infer candidates for an economic community matrix from time series data of market values. To assess the usefulness of this picture, we construct community matrices for a set of companies belonging to the Fortune 500 list and perform a community analysis on the resultant networks. This analysis shows these networks to strongly reflect the known industry groupings of the firms. We conclude therefore that our community matrices capture non-trivial information about the interaction of firms, not immediately apparent from the covariance of market values. We anticipate our approach being useful in elucidating further aspects of market structure, as well as forming the basis of forecasting market dynamics.
2021 | |
MaxEnt Business ecosystem Eecological networks Community detection Modularity |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/34239 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807522794342187008 |
---|---|
author | Emary, Clive |
author2 | Fort, Hugo |
author2_role | author |
author_facet | Emary, Clive Fort, Hugo |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c d606c60c5d78967c4ed7a729e5bb402f 9fdbed07f52437945402c4e70fa4773e 5293d945e4c583ed581a6f9634f123cc |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/34239/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/34239/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/34239/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/34239/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/34239/1/101093comnetcnab022.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Emary Clive Fort Hugo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. |
dc.creator.none.fl_str_mv | Emary, Clive Fort, Hugo |
dc.date.accessioned.none.fl_str_mv | 2022-10-18T19:39:37Z |
dc.date.available.none.fl_str_mv | 2022-10-18T19:39:37Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | Financial markets are paradigmatic examples of complex systems and have been compared to ecological networks in which different species (firms) interact and co-evolve. A central object governing species dynamics in ecology is the community matrix, whose elements are closely related to pairwise interspecific interaction coefficients. Using this ecological analogy we propose a method, based on the Maximum Entropy (MaxEnt) principle, that allows us to infer candidates for an economic community matrix from time series data of market values. To assess the usefulness of this picture, we construct community matrices for a set of companies belonging to the Fortune 500 list and perform a community analysis on the resultant networks. This analysis shows these networks to strongly reflect the known industry groupings of the firms. We conclude therefore that our community matrices capture non-trivial information about the interaction of firms, not immediately apparent from the covariance of market values. We anticipate our approach being useful in elucidating further aspects of market structure, as well as forming the basis of forecasting market dynamics. |
dc.format.extent.es.fl_str_mv | 17 h |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Emary, C y Fort, H. "Markets as ecological networks: inferring interactions and identifying communities". Journal of Complex Networks. [en línea] 2021, 9(2): cnab022. 17 h. DOI: 10.1093/comnet/cnab022. |
dc.identifier.doi.none.fl_str_mv | 10.1093/comnet/cnab022 |
dc.identifier.issn.none.fl_str_mv | 2051-1329 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/34239 |
dc.language.iso.none.fl_str_mv | en_US eng |
dc.relation.ispartof.es.fl_str_mv | Journal of Complex Networks, 2021, 9(2): cnab022. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | MaxEnt Business ecosystem Eecological networks Community detection Modularity |
dc.title.none.fl_str_mv | Markets as ecological networks: inferring interactions and identifying communities |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Financial markets are paradigmatic examples of complex systems and have been compared to ecological networks in which different species (firms) interact and co-evolve. A central object governing species dynamics in ecology is the community matrix, whose elements are closely related to pairwise interspecific interaction coefficients. Using this ecological analogy we propose a method, based on the Maximum Entropy (MaxEnt) principle, that allows us to infer candidates for an economic community matrix from time series data of market values. To assess the usefulness of this picture, we construct community matrices for a set of companies belonging to the Fortune 500 list and perform a community analysis on the resultant networks. This analysis shows these networks to strongly reflect the known industry groupings of the firms. We conclude therefore that our community matrices capture non-trivial information about the interaction of firms, not immediately apparent from the covariance of market values. We anticipate our approach being useful in elucidating further aspects of market structure, as well as forming the basis of forecasting market dynamics. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_920a250ebe5c51965e52a6f1c0706452 |
identifier_str_mv | Emary, C y Fort, H. "Markets as ecological networks: inferring interactions and identifying communities". Journal of Complex Networks. [en línea] 2021, 9(2): cnab022. 17 h. DOI: 10.1093/comnet/cnab022. 2051-1329 10.1093/comnet/cnab022 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en_US |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/34239 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Emary CliveFort Hugo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.2022-10-18T19:39:37Z2022-10-18T19:39:37Z2021Emary, C y Fort, H. "Markets as ecological networks: inferring interactions and identifying communities". Journal of Complex Networks. [en línea] 2021, 9(2): cnab022. 17 h. DOI: 10.1093/comnet/cnab022.2051-1329https://hdl.handle.net/20.500.12008/3423910.1093/comnet/cnab022Financial markets are paradigmatic examples of complex systems and have been compared to ecological networks in which different species (firms) interact and co-evolve. A central object governing species dynamics in ecology is the community matrix, whose elements are closely related to pairwise interspecific interaction coefficients. Using this ecological analogy we propose a method, based on the Maximum Entropy (MaxEnt) principle, that allows us to infer candidates for an economic community matrix from time series data of market values. To assess the usefulness of this picture, we construct community matrices for a set of companies belonging to the Fortune 500 list and perform a community analysis on the resultant networks. This analysis shows these networks to strongly reflect the known industry groupings of the firms. We conclude therefore that our community matrices capture non-trivial information about the interaction of firms, not immediately apparent from the covariance of market values. We anticipate our approach being useful in elucidating further aspects of market structure, as well as forming the basis of forecasting market dynamics.Submitted by Parodi Mónica (mparodi@fcien.edu.uy) on 2022-10-18T14:51:09Z No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 101093comnetcnab022.pdf: 1021090 bytes, checksum: 5293d945e4c583ed581a6f9634f123cc (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2022-10-18T17:24:47Z (GMT) No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 101093comnetcnab022.pdf: 1021090 bytes, checksum: 5293d945e4c583ed581a6f9634f123cc (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-10-18T19:39:37Z (GMT). No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 101093comnetcnab022.pdf: 1021090 bytes, checksum: 5293d945e4c583ed581a6f9634f123cc (MD5) Previous issue date: 202117 happlication/pdfen_USengJournal of Complex Networks, 2021, 9(2): cnab022.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)MaxEntBusiness ecosystemEecological networksCommunity detectionModularityMarkets as ecological networks: inferring interactions and identifying communitiesArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaEmary, CliveFort, HugoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/34239/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/34239/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-838395http://localhost:8080/xmlui/bitstream/20.500.12008/34239/3/license_textd606c60c5d78967c4ed7a729e5bb402fMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-819875http://localhost:8080/xmlui/bitstream/20.500.12008/34239/4/license_rdf9fdbed07f52437945402c4e70fa4773eMD54ORIGINAL101093comnetcnab022.pdf101093comnetcnab022.pdfapplication/pdf1021090http://localhost:8080/xmlui/bitstream/20.500.12008/34239/1/101093comnetcnab022.pdf5293d945e4c583ed581a6f9634f123ccMD5120.500.12008/342392022-10-18 16:39:37.227oai:colibri.udelar.edu.uy:20.500.12008/34239VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:28:50.450598COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Markets as ecological networks: inferring interactions and identifying communities Emary, Clive MaxEnt Business ecosystem Eecological networks Community detection Modularity |
status_str | publishedVersion |
title | Markets as ecological networks: inferring interactions and identifying communities |
title_full | Markets as ecological networks: inferring interactions and identifying communities |
title_fullStr | Markets as ecological networks: inferring interactions and identifying communities |
title_full_unstemmed | Markets as ecological networks: inferring interactions and identifying communities |
title_short | Markets as ecological networks: inferring interactions and identifying communities |
title_sort | Markets as ecological networks: inferring interactions and identifying communities |
topic | MaxEnt Business ecosystem Eecological networks Community detection Modularity |
url | https://hdl.handle.net/20.500.12008/34239 |