Inferring long memory processes in the climate network via ordinal pattern analysis
Resumen:
We use ordinal patterns and symbolic analysis to construct global climate networks and uncover long- and short-term memory processes. Data analyzed are the monthly averaged surface air temperature (SAT field), and the results suggest that the time variability of the SAT field is determined by patterns of oscillatory behavior that repeat from time to time, with a periodicity related to intraseasonal oscillations and to El Niño on seasonal-to-interannual time scales.
2011 | |
Climate analysis Complex networks Ordinal patterns Symbolic time series |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/34197 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Inferring interdependencies in climate networks constructed at inter-annual, intra-season and longer time scales
Autor(es):: Deza, J. Ignacio
Fecha de publicación:: (2013) -
Global atmospheric dynamics investigated by using Hilbert Frequency Analysis
Autor(es):: Zappalà, Dario A.
Fecha de publicación:: (2016) -
Exploring teleconnections and climate dynamics by means of complex networks
Autor(es):: Arizmendi, Fernando
Fecha de publicación:: (2018) -
Identifying large-scale patterns of unpredictability and response to insolation in atmospheric data
Autor(es):: Arizmendi, Fernando
Fecha de publicación:: (2017) -
Food webs and fish size patterns in insular lakes partially support climate-related features in continental lakes
Autor(es):: Vidal, Nicolás
Fecha de publicación:: (2021)