Expansive dynamical systems

Artigue, Alfonso

Supervisor(es): Vieitez, José L. - Pacífico, María J.

Resumen:

It is a thesis about dynamical systems with some kind of expansiveness. We consider homeomorphisms and fows on compact metric spaces. The smooth category is considered and some results are proved for manifolds. Several variations of expansiveness are considered. In the discrete time case we consider: cw-expansiveness, N-expansiveness, hyper-expansiveness. For the case of continuous fows we study: geometric and kinematic expansiveness, positive expansiveness and robust expansiveness. The results we obtained were or will be published in [6-10].


Esta tesis versa sobre sistemas dinámicos con diversos tipos de expansividad. Consideramos homeomorfismos y flujos en espacios métricos compactos. También se considera la categoría diferenciable y algunos resultados se demuestran en variedades. Diferentes variantes de la expansividad son tomados en cuenta. En tiempo discreto: cw-expansividad, N-expansividad, hiperexpansividad. En el caso de flujos: expansividad cinemática y geométrica, expansividad positiva y expansividad robusta. De los resultados obtenidos algunos fueron y otros serán publicados en las referencias [6-10].


Detalles Bibliográficos
2015
SISTEMAS DINÁMICOS
HOMEOMORFISMOS
EXPANSIVIDAD
CW-EXPANSIVIDAD
N-EXPANSIVIDAD
HIPEREXPANSIVIDAD
EXPANSIVIDAD CINEMÁTICA Y GEOMÉTRICA
EXPANSIVIDAD POSITIVA
EXPANSIVIDAD ROBUSTA
Inglés
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/5419
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
Resumen:
Sumario:It is a thesis about dynamical systems with some kind of expansiveness. We consider homeomorphisms and fows on compact metric spaces. The smooth category is considered and some results are proved for manifolds. Several variations of expansiveness are considered. In the discrete time case we consider: cw-expansiveness, N-expansiveness, hyper-expansiveness. For the case of continuous fows we study: geometric and kinematic expansiveness, positive expansiveness and robust expansiveness. The results we obtained were or will be published in [6-10].