Deep learning for the analysis of network traffic measurements
Supervisor(es): Capdehourat, Germán - Casas, Pedro
Resumen:
The application of machine learning models to the analysis of network traffic measurements has largely increased in recent years. In the networking domain, shallow models are usually applied, where a set of expert handcrafted features are needed to fix the data before training. There are two main problems associated with this approach: firstly, it requires expert domain knowledge to select the input features, and secondly, different sets of custom-made input features are generally needed according to the specific target (e.g., network security, anomaly detection, traffic classification). On the other hand, the power of machine learning models using deep architectures (i.e., deep learning) for networking has not been yet highly explored. These models have had huge success in various domains, notably in computer vision, natural language processing, machine translation, and more recently in gaming. The main goal of this work is to explore the power of deep learning models to enhance the analysis of network tra c measurements. To this end, the specific problem of detection and classi cation of network attacks is studied. As a major advantage with respect to the state-of-the-art in the field, the evaluation of different raw-traffic input representations, including packet and ow-level ones, is considered. Different deep learning architectures are explored, including convolutional neural networks and long short-term memory recurrent neural networks as core layers. In addition, three different datasets are crafted from publicly available network traffic captures and used for calibrating the considered input representations, as well as training and validating the proposed models. Different deep learning models are compared to a random forest model - commonly accepted as a highly accurate model for network traffic analysis, using the same raw input representations. In the malware detection task, a detection accuracy of 77.6% and 98.5% was achieved for packet and ow input representations respectively. For the malware classification task, an overall accuracy of 76.5% was achieved. In all evaluation tasks, the proposed deep learning models outperform the random forest ones. These initial results suggest that deep learning can be used to enhance malware detection without requiring expert domain knowledge to handcraft input features, opening the door to a broad set of potential applications for deep learning in networking.
2019 | |
Modelos de aprendizaje automático Mediciones de tráfico de red Arquitecturas de aprendizaje profundo |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/21770 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND) |
_version_ | 1807523178451304448 |
---|---|
author | Marín Freire, Gonzalo Miguel |
author_facet | Marín Freire, Gonzalo Miguel |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 04e4e49e7bc8c11ca2f7c2073bb51d8c 9da0b6dfac957114c6a7714714b86306 53736e23996cffb19d3d717ea6fd9d2f |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/21770/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/21770/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/21770/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/21770/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/21770/1/tm-Mar%C3%ADnFreire.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Marín Freire Gonzalo Miguel, Universidad de la República (Uruguay). Facultad de Ingeniería |
dc.creator.advisor.none.fl_str_mv | Capdehourat, Germán Casas, Pedro |
dc.creator.none.fl_str_mv | Marín Freire, Gonzalo Miguel |
dc.date.accessioned.none.fl_str_mv | 2019-09-11T21:15:57Z |
dc.date.available.none.fl_str_mv | 2019-09-11T21:15:57Z |
dc.date.issued.none.fl_str_mv | 2019 |
dc.description.abstract.none.fl_txt_mv | The application of machine learning models to the analysis of network traffic measurements has largely increased in recent years. In the networking domain, shallow models are usually applied, where a set of expert handcrafted features are needed to fix the data before training. There are two main problems associated with this approach: firstly, it requires expert domain knowledge to select the input features, and secondly, different sets of custom-made input features are generally needed according to the specific target (e.g., network security, anomaly detection, traffic classification). On the other hand, the power of machine learning models using deep architectures (i.e., deep learning) for networking has not been yet highly explored. These models have had huge success in various domains, notably in computer vision, natural language processing, machine translation, and more recently in gaming. The main goal of this work is to explore the power of deep learning models to enhance the analysis of network tra c measurements. To this end, the specific problem of detection and classi cation of network attacks is studied. As a major advantage with respect to the state-of-the-art in the field, the evaluation of different raw-traffic input representations, including packet and ow-level ones, is considered. Different deep learning architectures are explored, including convolutional neural networks and long short-term memory recurrent neural networks as core layers. In addition, three different datasets are crafted from publicly available network traffic captures and used for calibrating the considered input representations, as well as training and validating the proposed models. Different deep learning models are compared to a random forest model - commonly accepted as a highly accurate model for network traffic analysis, using the same raw input representations. In the malware detection task, a detection accuracy of 77.6% and 98.5% was achieved for packet and ow input representations respectively. For the malware classification task, an overall accuracy of 76.5% was achieved. In all evaluation tasks, the proposed deep learning models outperform the random forest ones. These initial results suggest that deep learning can be used to enhance malware detection without requiring expert domain knowledge to handcraft input features, opening the door to a broad set of potential applications for deep learning in networking. |
dc.format.extent.es.fl_str_mv | 70 p. |
dc.format.mimetype.en.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Marín Freire, G. Deep learning for the analysis of network traffic measurements [en línea] Tesis de maestría. Montevideo : Udelar.FI.IIE., 2019. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/21770 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Udelar.FI.IIE |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Modelos de aprendizaje automático Mediciones de tráfico de red Arquitecturas de aprendizaje profundo |
dc.title.none.fl_str_mv | Deep learning for the analysis of network traffic measurements |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | The application of machine learning models to the analysis of network traffic measurements has largely increased in recent years. In the networking domain, shallow models are usually applied, where a set of expert handcrafted features are needed to fix the data before training. There are two main problems associated with this approach: firstly, it requires expert domain knowledge to select the input features, and secondly, different sets of custom-made input features are generally needed according to the specific target (e.g., network security, anomaly detection, traffic classification). On the other hand, the power of machine learning models using deep architectures (i.e., deep learning) for networking has not been yet highly explored. These models have had huge success in various domains, notably in computer vision, natural language processing, machine translation, and more recently in gaming. The main goal of this work is to explore the power of deep learning models to enhance the analysis of network tra c measurements. To this end, the specific problem of detection and classi cation of network attacks is studied. As a major advantage with respect to the state-of-the-art in the field, the evaluation of different raw-traffic input representations, including packet and ow-level ones, is considered. Different deep learning architectures are explored, including convolutional neural networks and long short-term memory recurrent neural networks as core layers. In addition, three different datasets are crafted from publicly available network traffic captures and used for calibrating the considered input representations, as well as training and validating the proposed models. Different deep learning models are compared to a random forest model - commonly accepted as a highly accurate model for network traffic analysis, using the same raw input representations. In the malware detection task, a detection accuracy of 77.6% and 98.5% was achieved for packet and ow input representations respectively. For the malware classification task, an overall accuracy of 76.5% was achieved. In all evaluation tasks, the proposed deep learning models outperform the random forest ones. These initial results suggest that deep learning can be used to enhance malware detection without requiring expert domain knowledge to handcraft input features, opening the door to a broad set of potential applications for deep learning in networking. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_8cab4c99f8e38c5b37b7fc5bc3eba98e |
identifier_str_mv | Marín Freire, G. Deep learning for the analysis of network traffic measurements [en línea] Tesis de maestría. Montevideo : Udelar.FI.IIE., 2019. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/21770 |
publishDate | 2019 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND) |
spelling | Marín Freire Gonzalo Miguel, Universidad de la República (Uruguay). Facultad de Ingeniería2019-09-11T21:15:57Z2019-09-11T21:15:57Z2019Marín Freire, G. Deep learning for the analysis of network traffic measurements [en línea] Tesis de maestría. Montevideo : Udelar.FI.IIE., 2019.https://hdl.handle.net/20.500.12008/21770The application of machine learning models to the analysis of network traffic measurements has largely increased in recent years. In the networking domain, shallow models are usually applied, where a set of expert handcrafted features are needed to fix the data before training. There are two main problems associated with this approach: firstly, it requires expert domain knowledge to select the input features, and secondly, different sets of custom-made input features are generally needed according to the specific target (e.g., network security, anomaly detection, traffic classification). On the other hand, the power of machine learning models using deep architectures (i.e., deep learning) for networking has not been yet highly explored. These models have had huge success in various domains, notably in computer vision, natural language processing, machine translation, and more recently in gaming. The main goal of this work is to explore the power of deep learning models to enhance the analysis of network tra c measurements. To this end, the specific problem of detection and classi cation of network attacks is studied. As a major advantage with respect to the state-of-the-art in the field, the evaluation of different raw-traffic input representations, including packet and ow-level ones, is considered. Different deep learning architectures are explored, including convolutional neural networks and long short-term memory recurrent neural networks as core layers. In addition, three different datasets are crafted from publicly available network traffic captures and used for calibrating the considered input representations, as well as training and validating the proposed models. Different deep learning models are compared to a random forest model - commonly accepted as a highly accurate model for network traffic analysis, using the same raw input representations. In the malware detection task, a detection accuracy of 77.6% and 98.5% was achieved for packet and ow input representations respectively. For the malware classification task, an overall accuracy of 76.5% was achieved. In all evaluation tasks, the proposed deep learning models outperform the random forest ones. These initial results suggest that deep learning can be used to enhance malware detection without requiring expert domain knowledge to handcraft input features, opening the door to a broad set of potential applications for deep learning in networking.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2019-09-11T21:15:57Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) tm-MarínFreire.pdf: 1579448 bytes, checksum: 53736e23996cffb19d3d717ea6fd9d2f (MD5)Made available in DSpace on 2019-09-11T21:15:57Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) tm-MarínFreire.pdf: 1579448 bytes, checksum: 53736e23996cffb19d3d717ea6fd9d2f (MD5) Previous issue date: 201970 p.application/pdfenengUdelar.FI.IIELas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND)Modelos de aprendizaje automáticoMediciones de tráfico de redArquitecturas de aprendizaje profundoDeep learning for the analysis of network traffic measurementsTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMarín Freire, Gonzalo MiguelCapdehourat, GermánCasas, PedroUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en Ingeniería EléctricaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/21770/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/21770/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838517http://localhost:8080/xmlui/bitstream/20.500.12008/21770/3/license_text04e4e49e7bc8c11ca2f7c2073bb51d8cMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/21770/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALtm-MarínFreire.pdftm-MarínFreire.pdfapplication/pdf1579448http://localhost:8080/xmlui/bitstream/20.500.12008/21770/1/tm-Mar%C3%ADnFreire.pdf53736e23996cffb19d3d717ea6fd9d2fMD5120.500.12008/217702019-09-11 18:18:01.411oai:colibri.udelar.edu.uy:20.500.12008/21770VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:16.912094COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Deep learning for the analysis of network traffic measurements Marín Freire, Gonzalo Miguel Modelos de aprendizaje automático Mediciones de tráfico de red Arquitecturas de aprendizaje profundo |
status_str | acceptedVersion |
title | Deep learning for the analysis of network traffic measurements |
title_full | Deep learning for the analysis of network traffic measurements |
title_fullStr | Deep learning for the analysis of network traffic measurements |
title_full_unstemmed | Deep learning for the analysis of network traffic measurements |
title_short | Deep learning for the analysis of network traffic measurements |
title_sort | Deep learning for the analysis of network traffic measurements |
topic | Modelos de aprendizaje automático Mediciones de tráfico de red Arquitecturas de aprendizaje profundo |
url | https://hdl.handle.net/20.500.12008/21770 |