Deep learning for the analysis of network traffic measurements

Marín Freire, Gonzalo Miguel

Supervisor(es): Capdehourat, Germán - Casas, Pedro

Resumen:

The application of machine learning models to the analysis of network traffic measurements has largely increased in recent years. In the networking domain, shallow models are usually applied, where a set of expert handcrafted features are needed to fix the data before training. There are two main problems associated with this approach: firstly, it requires expert domain knowledge to select the input features, and secondly, different sets of custom-made input features are generally needed according to the specific target (e.g., network security, anomaly detection, traffic classification). On the other hand, the power of machine learning models using deep architectures (i.e., deep learning) for networking has not been yet highly explored. These models have had huge success in various domains, notably in computer vision, natural language processing, machine translation, and more recently in gaming. The main goal of this work is to explore the power of deep learning models to enhance the analysis of network tra c measurements. To this end, the specific problem of detection and classi cation of network attacks is studied. As a major advantage with respect to the state-of-the-art in the field, the evaluation of different raw-traffic input representations, including packet and ow-level ones, is considered. Different deep learning architectures are explored, including convolutional neural networks and long short-term memory recurrent neural networks as core layers. In addition, three different datasets are crafted from publicly available network traffic captures and used for calibrating the considered input representations, as well as training and validating the proposed models. Different deep learning models are compared to a random forest model - commonly accepted as a highly accurate model for network traffic analysis, using the same raw input representations. In the malware detection task, a detection accuracy of 77.6% and 98.5% was achieved for packet and ow input representations respectively. For the malware classification task, an overall accuracy of 76.5% was achieved. In all evaluation tasks, the proposed deep learning models outperform the random forest ones. These initial results suggest that deep learning can be used to enhance malware detection without requiring expert domain knowledge to handcraft input features, opening the door to a broad set of potential applications for deep learning in networking.


Detalles Bibliográficos
2019
Modelos de aprendizaje automático
Mediciones de tráfico de red
Arquitecturas de aprendizaje profundo
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/21770
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND)
_version_ 1807523178451304448
author Marín Freire, Gonzalo Miguel
author_facet Marín Freire, Gonzalo Miguel
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
04e4e49e7bc8c11ca2f7c2073bb51d8c
9da0b6dfac957114c6a7714714b86306
53736e23996cffb19d3d717ea6fd9d2f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/21770/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/21770/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/21770/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/21770/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/21770/1/tm-Mar%C3%ADnFreire.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Marín Freire Gonzalo Miguel, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Capdehourat, Germán
Casas, Pedro
dc.creator.none.fl_str_mv Marín Freire, Gonzalo Miguel
dc.date.accessioned.none.fl_str_mv 2019-09-11T21:15:57Z
dc.date.available.none.fl_str_mv 2019-09-11T21:15:57Z
dc.date.issued.none.fl_str_mv 2019
dc.description.abstract.none.fl_txt_mv The application of machine learning models to the analysis of network traffic measurements has largely increased in recent years. In the networking domain, shallow models are usually applied, where a set of expert handcrafted features are needed to fix the data before training. There are two main problems associated with this approach: firstly, it requires expert domain knowledge to select the input features, and secondly, different sets of custom-made input features are generally needed according to the specific target (e.g., network security, anomaly detection, traffic classification). On the other hand, the power of machine learning models using deep architectures (i.e., deep learning) for networking has not been yet highly explored. These models have had huge success in various domains, notably in computer vision, natural language processing, machine translation, and more recently in gaming. The main goal of this work is to explore the power of deep learning models to enhance the analysis of network tra c measurements. To this end, the specific problem of detection and classi cation of network attacks is studied. As a major advantage with respect to the state-of-the-art in the field, the evaluation of different raw-traffic input representations, including packet and ow-level ones, is considered. Different deep learning architectures are explored, including convolutional neural networks and long short-term memory recurrent neural networks as core layers. In addition, three different datasets are crafted from publicly available network traffic captures and used for calibrating the considered input representations, as well as training and validating the proposed models. Different deep learning models are compared to a random forest model - commonly accepted as a highly accurate model for network traffic analysis, using the same raw input representations. In the malware detection task, a detection accuracy of 77.6% and 98.5% was achieved for packet and ow input representations respectively. For the malware classification task, an overall accuracy of 76.5% was achieved. In all evaluation tasks, the proposed deep learning models outperform the random forest ones. These initial results suggest that deep learning can be used to enhance malware detection without requiring expert domain knowledge to handcraft input features, opening the door to a broad set of potential applications for deep learning in networking.
dc.format.extent.es.fl_str_mv 70 p.
dc.format.mimetype.en.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Marín Freire, G. Deep learning for the analysis of network traffic measurements [en línea] Tesis de maestría. Montevideo : Udelar.FI.IIE., 2019.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/21770
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI.IIE
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Modelos de aprendizaje automático
Mediciones de tráfico de red
Arquitecturas de aprendizaje profundo
dc.title.none.fl_str_mv Deep learning for the analysis of network traffic measurements
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description The application of machine learning models to the analysis of network traffic measurements has largely increased in recent years. In the networking domain, shallow models are usually applied, where a set of expert handcrafted features are needed to fix the data before training. There are two main problems associated with this approach: firstly, it requires expert domain knowledge to select the input features, and secondly, different sets of custom-made input features are generally needed according to the specific target (e.g., network security, anomaly detection, traffic classification). On the other hand, the power of machine learning models using deep architectures (i.e., deep learning) for networking has not been yet highly explored. These models have had huge success in various domains, notably in computer vision, natural language processing, machine translation, and more recently in gaming. The main goal of this work is to explore the power of deep learning models to enhance the analysis of network tra c measurements. To this end, the specific problem of detection and classi cation of network attacks is studied. As a major advantage with respect to the state-of-the-art in the field, the evaluation of different raw-traffic input representations, including packet and ow-level ones, is considered. Different deep learning architectures are explored, including convolutional neural networks and long short-term memory recurrent neural networks as core layers. In addition, three different datasets are crafted from publicly available network traffic captures and used for calibrating the considered input representations, as well as training and validating the proposed models. Different deep learning models are compared to a random forest model - commonly accepted as a highly accurate model for network traffic analysis, using the same raw input representations. In the malware detection task, a detection accuracy of 77.6% and 98.5% was achieved for packet and ow input representations respectively. For the malware classification task, an overall accuracy of 76.5% was achieved. In all evaluation tasks, the proposed deep learning models outperform the random forest ones. These initial results suggest that deep learning can be used to enhance malware detection without requiring expert domain knowledge to handcraft input features, opening the door to a broad set of potential applications for deep learning in networking.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_8cab4c99f8e38c5b37b7fc5bc3eba98e
identifier_str_mv Marín Freire, G. Deep learning for the analysis of network traffic measurements [en línea] Tesis de maestría. Montevideo : Udelar.FI.IIE., 2019.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/21770
publishDate 2019
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND)
spelling Marín Freire Gonzalo Miguel, Universidad de la República (Uruguay). Facultad de Ingeniería2019-09-11T21:15:57Z2019-09-11T21:15:57Z2019Marín Freire, G. Deep learning for the analysis of network traffic measurements [en línea] Tesis de maestría. Montevideo : Udelar.FI.IIE., 2019.https://hdl.handle.net/20.500.12008/21770The application of machine learning models to the analysis of network traffic measurements has largely increased in recent years. In the networking domain, shallow models are usually applied, where a set of expert handcrafted features are needed to fix the data before training. There are two main problems associated with this approach: firstly, it requires expert domain knowledge to select the input features, and secondly, different sets of custom-made input features are generally needed according to the specific target (e.g., network security, anomaly detection, traffic classification). On the other hand, the power of machine learning models using deep architectures (i.e., deep learning) for networking has not been yet highly explored. These models have had huge success in various domains, notably in computer vision, natural language processing, machine translation, and more recently in gaming. The main goal of this work is to explore the power of deep learning models to enhance the analysis of network tra c measurements. To this end, the specific problem of detection and classi cation of network attacks is studied. As a major advantage with respect to the state-of-the-art in the field, the evaluation of different raw-traffic input representations, including packet and ow-level ones, is considered. Different deep learning architectures are explored, including convolutional neural networks and long short-term memory recurrent neural networks as core layers. In addition, three different datasets are crafted from publicly available network traffic captures and used for calibrating the considered input representations, as well as training and validating the proposed models. Different deep learning models are compared to a random forest model - commonly accepted as a highly accurate model for network traffic analysis, using the same raw input representations. In the malware detection task, a detection accuracy of 77.6% and 98.5% was achieved for packet and ow input representations respectively. For the malware classification task, an overall accuracy of 76.5% was achieved. In all evaluation tasks, the proposed deep learning models outperform the random forest ones. These initial results suggest that deep learning can be used to enhance malware detection without requiring expert domain knowledge to handcraft input features, opening the door to a broad set of potential applications for deep learning in networking.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2019-09-11T21:15:57Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) tm-MarínFreire.pdf: 1579448 bytes, checksum: 53736e23996cffb19d3d717ea6fd9d2f (MD5)Made available in DSpace on 2019-09-11T21:15:57Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) tm-MarínFreire.pdf: 1579448 bytes, checksum: 53736e23996cffb19d3d717ea6fd9d2f (MD5) Previous issue date: 201970 p.application/pdfenengUdelar.FI.IIELas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC-BY-NC-ND)Modelos de aprendizaje automáticoMediciones de tráfico de redArquitecturas de aprendizaje profundoDeep learning for the analysis of network traffic measurementsTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMarín Freire, Gonzalo MiguelCapdehourat, GermánCasas, PedroUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en Ingeniería EléctricaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/21770/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/21770/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838517http://localhost:8080/xmlui/bitstream/20.500.12008/21770/3/license_text04e4e49e7bc8c11ca2f7c2073bb51d8cMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/21770/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALtm-MarínFreire.pdftm-MarínFreire.pdfapplication/pdf1579448http://localhost:8080/xmlui/bitstream/20.500.12008/21770/1/tm-Mar%C3%ADnFreire.pdf53736e23996cffb19d3d717ea6fd9d2fMD5120.500.12008/217702019-09-11 18:18:01.411oai:colibri.udelar.edu.uy:20.500.12008/21770VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:16.912094COLIBRI - Universidad de la Repúblicafalse
spellingShingle Deep learning for the analysis of network traffic measurements
Marín Freire, Gonzalo Miguel
Modelos de aprendizaje automático
Mediciones de tráfico de red
Arquitecturas de aprendizaje profundo
status_str acceptedVersion
title Deep learning for the analysis of network traffic measurements
title_full Deep learning for the analysis of network traffic measurements
title_fullStr Deep learning for the analysis of network traffic measurements
title_full_unstemmed Deep learning for the analysis of network traffic measurements
title_short Deep learning for the analysis of network traffic measurements
title_sort Deep learning for the analysis of network traffic measurements
topic Modelos de aprendizaje automático
Mediciones de tráfico de red
Arquitecturas de aprendizaje profundo
url https://hdl.handle.net/20.500.12008/21770