Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido.

Cuturi Grignola, María Paz - Padula Lenna, Facundo

Supervisor(es): Rodríguez Bocca, Pablo - Marotta, Adriana - Moncecchi, Guillermo - Tansini, Libertad

Resumen:

Los modelos de aprendizaje profundo para grafos han mejorado el estado del arte en muchas tareas. A pesar de su reciente éxito, existen pocas investigaciones acerca de su robustez. En esta tesis se estudia el comportamiento de Graph Convolutional Networks (GCNs) ante datos con ruido para la tarea de clasificación de nodos. Se utiliza el cálculo de meta-gradientes para introducir ruido en las aristas y los atributos, esencialmente tratando al grafo como un hiperparámetro a optimizar. Se estudia la cantidad de aristas y atributos que hay que modificar para reducir el accuracy de la clasificación en un 5%, considerando las modificaciones con impacto máximo y mínimo. Nuestros experimentos muestran que el impacto del ruido varía mucho dependiendo de los datos modificados, indicando que no todas las aristas ni todos los atributos inciden de la misma forma en la clasificación de un nodo. En los casos estudiados el impacto al introducir ruido en aristas es mayor que el impacto al introducir ruido en atributos de los nodos. Nuestros resultados pueden servir de guía para estudiar qué determina que una arista o atributo tenga mayor o menor impacto en la clasificación de un nodo, y en general para estimar la robustez de un problema de clasificación frente a ruido en los datos.


Detalles Bibliográficos
2020
Graph convolutional networks
Impacto del ruido
Meta-gradientes
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/25235
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523226113277952
author Cuturi Grignola, María Paz
author2 Padula Lenna, Facundo
author2_role author
author_facet Cuturi Grignola, María Paz
Padula Lenna, Facundo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
d77747f0b79dbc4c411d2260a3d95cd2
1996b8461bc290aef6a27d78c67b6b52
1f88cdf1e3c3b79f0da0a06d60c63c70
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/25235/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/25235/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/25235/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/25235/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/25235/1/CP20.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Cuturi Grignola María Paz, Universidad de la República (Uruguay). Facultad de Ingeniería
Padula Lenna Facundo, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Rodríguez Bocca, Pablo
Marotta, Adriana
Moncecchi, Guillermo
Tansini, Libertad
dc.creator.none.fl_str_mv Cuturi Grignola, María Paz
Padula Lenna, Facundo
dc.date.accessioned.none.fl_str_mv 2020-09-11T14:17:14Z
dc.date.available.none.fl_str_mv 2020-09-11T14:17:14Z
dc.date.issued.none.fl_str_mv 2020
dc.description.abstract.none.fl_txt_mv Los modelos de aprendizaje profundo para grafos han mejorado el estado del arte en muchas tareas. A pesar de su reciente éxito, existen pocas investigaciones acerca de su robustez. En esta tesis se estudia el comportamiento de Graph Convolutional Networks (GCNs) ante datos con ruido para la tarea de clasificación de nodos. Se utiliza el cálculo de meta-gradientes para introducir ruido en las aristas y los atributos, esencialmente tratando al grafo como un hiperparámetro a optimizar. Se estudia la cantidad de aristas y atributos que hay que modificar para reducir el accuracy de la clasificación en un 5%, considerando las modificaciones con impacto máximo y mínimo. Nuestros experimentos muestran que el impacto del ruido varía mucho dependiendo de los datos modificados, indicando que no todas las aristas ni todos los atributos inciden de la misma forma en la clasificación de un nodo. En los casos estudiados el impacto al introducir ruido en aristas es mayor que el impacto al introducir ruido en atributos de los nodos. Nuestros resultados pueden servir de guía para estudiar qué determina que una arista o atributo tenga mayor o menor impacto en la clasificación de un nodo, y en general para estimar la robustez de un problema de clasificación frente a ruido en los datos.
dc.format.extent.es.fl_str_mv 86 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Cuturi Grignola, M. y Padula Lenna, F. Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2020.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/25235
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Graph convolutional networks
Impacto del ruido
Meta-gradientes
dc.title.none.fl_str_mv Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido.
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Los modelos de aprendizaje profundo para grafos han mejorado el estado del arte en muchas tareas. A pesar de su reciente éxito, existen pocas investigaciones acerca de su robustez. En esta tesis se estudia el comportamiento de Graph Convolutional Networks (GCNs) ante datos con ruido para la tarea de clasificación de nodos. Se utiliza el cálculo de meta-gradientes para introducir ruido en las aristas y los atributos, esencialmente tratando al grafo como un hiperparámetro a optimizar. Se estudia la cantidad de aristas y atributos que hay que modificar para reducir el accuracy de la clasificación en un 5%, considerando las modificaciones con impacto máximo y mínimo. Nuestros experimentos muestran que el impacto del ruido varía mucho dependiendo de los datos modificados, indicando que no todas las aristas ni todos los atributos inciden de la misma forma en la clasificación de un nodo. En los casos estudiados el impacto al introducir ruido en aristas es mayor que el impacto al introducir ruido en atributos de los nodos. Nuestros resultados pueden servir de guía para estudiar qué determina que una arista o atributo tenga mayor o menor impacto en la clasificación de un nodo, y en general para estimar la robustez de un problema de clasificación frente a ruido en los datos.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_8ad8929eafff3ecf894df20029fddd31
identifier_str_mv Cuturi Grignola, M. y Padula Lenna, F. Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2020.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/25235
publishDate 2020
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Cuturi Grignola María Paz, Universidad de la República (Uruguay). Facultad de IngenieríaPadula Lenna Facundo, Universidad de la República (Uruguay). Facultad de Ingeniería2020-09-11T14:17:14Z2020-09-11T14:17:14Z2020Cuturi Grignola, M. y Padula Lenna, F. Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2020.https://hdl.handle.net/20.500.12008/25235Los modelos de aprendizaje profundo para grafos han mejorado el estado del arte en muchas tareas. A pesar de su reciente éxito, existen pocas investigaciones acerca de su robustez. En esta tesis se estudia el comportamiento de Graph Convolutional Networks (GCNs) ante datos con ruido para la tarea de clasificación de nodos. Se utiliza el cálculo de meta-gradientes para introducir ruido en las aristas y los atributos, esencialmente tratando al grafo como un hiperparámetro a optimizar. Se estudia la cantidad de aristas y atributos que hay que modificar para reducir el accuracy de la clasificación en un 5%, considerando las modificaciones con impacto máximo y mínimo. Nuestros experimentos muestran que el impacto del ruido varía mucho dependiendo de los datos modificados, indicando que no todas las aristas ni todos los atributos inciden de la misma forma en la clasificación de un nodo. En los casos estudiados el impacto al introducir ruido en aristas es mayor que el impacto al introducir ruido en atributos de los nodos. Nuestros resultados pueden servir de guía para estudiar qué determina que una arista o atributo tenga mayor o menor impacto en la clasificación de un nodo, y en general para estimar la robustez de un problema de clasificación frente a ruido en los datos.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2020-09-09T20:17:24Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CP20.pdf: 22919831 bytes, checksum: 1f88cdf1e3c3b79f0da0a06d60c63c70 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-09-11T14:08:00Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CP20.pdf: 22919831 bytes, checksum: 1f88cdf1e3c3b79f0da0a06d60c63c70 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-09-11T14:17:14Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CP20.pdf: 22919831 bytes, checksum: 1f88cdf1e3c3b79f0da0a06d60c63c70 (MD5) Previous issue date: 202086 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Graph convolutional networksImpacto del ruidoMeta-gradientesComportamiento de Graph Convolutional Networks (GCN) ante datos con ruido.Tesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCuturi Grignola, María PazPadula Lenna, FacundoRodríguez Bocca, PabloMarotta, AdrianaMoncecchi, GuillermoTansini, LibertadUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/25235/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/25235/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838687http://localhost:8080/xmlui/bitstream/20.500.12008/25235/3/license_textd77747f0b79dbc4c411d2260a3d95cd2MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/25235/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALCP20.pdfCP20.pdfapplication/pdf22919831http://localhost:8080/xmlui/bitstream/20.500.12008/25235/1/CP20.pdf1f88cdf1e3c3b79f0da0a06d60c63c70MD5120.500.12008/252352024-04-12 14:06:40.449oai:colibri.udelar.edu.uy:20.500.12008/25235VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:20.710154COLIBRI - Universidad de la Repúblicafalse
spellingShingle Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido.
Cuturi Grignola, María Paz
Graph convolutional networks
Impacto del ruido
Meta-gradientes
status_str acceptedVersion
title Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido.
title_full Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido.
title_fullStr Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido.
title_full_unstemmed Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido.
title_short Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido.
title_sort Comportamiento de Graph Convolutional Networks (GCN) ante datos con ruido.
topic Graph convolutional networks
Impacto del ruido
Meta-gradientes
url https://hdl.handle.net/20.500.12008/25235