Level set and density estimation on manifolds
Resumen:
We tackle the problem of the estimation of the level sets Lf (λ) of the density f of a random vector X supported on a smooth manifold M ⊂ Rd, from an iid sample of X. To do that we introduce a kernel-based estimator ˆfn,h, which is a slightly modified version of the one proposed in [45], and proves its a.s. uniform convergence to f . Then, we propose two estimators of Lf (λ), the first one is a plug-in: L ˆfn,h (λ), which is proven to be a.s. consistent in Hausdorff distance and distance in measure, if Lf (λ) does not meet the boundary of M . While the second one assumes that Lf (λ) is r-convex, and is estimated by means of the r-convex hull of L ˆfn,h (λ). The performance of our proposal is illustrated through some simulated examples. In a real data example we analyze the intensity and direction of strong and moderate winds.
2021 | |
ANII: FCE_1_2019_1_156054 | |
Mathematics - Statistics theory | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/37378 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Universally consistent estimation of the reach
Autor(es):: Cholaquidis, Alejandro
Fecha de publicación:: (2022) -
Weighted lens depth: Some applications to supervised classification
Autor(es):: Cholaquidis, Alejandro
Fecha de publicación:: (2020) -
On the finiteness of the moments of the measure of level sets of random fields
Autor(es):: Armentano, Diego
Fecha de publicación:: (2020) -
A database of paramodular forms from quinary orthogonal modular forms
Autor(es):: Assaf, Eran
Fecha de publicación:: (2023) -
On the 2-Selmer group of Jacobians of hyperelliptic curves
Autor(es):: Barrera Salazar, Daniel
Fecha de publicación:: (2023)