Variable forgetting factor least squares identification algorithm : a convergence analysis
Resumen:
This paper studies the convergences of the least-squares identification algorithm with variable forgetting factor. The evolution of the parameter estimator with respect to initial conditions, actual parameter changes and stochastic perturbations is analysed. Bounds on the deterministic and stochastic parts of their estimator error are found and their relation to a persistent excitation condition is discussed. This relation explains the possibility of having “bursting” phenomena during the identification process. Special attention is paid to the consistency of these results with the classical ones obtained for the ordinary least-squares algorithm when the forgetting factor tends to unity.
1988 | |
SISTEMAS y CONTROL | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/20902 | |
Acceso abierto |
Resultados similares
-
Convergence analysis of the least squares identification algorithm with variable forgetting factor for time varying linear systems
Autor(es):: Canetti, Rafael
Fecha de publicación:: (1987) -
Systematic errors in pulmonary mechanics parameter extraction with the least mean square (LMS) method
Autor(es):: Basalo, S
Fecha de publicación:: (1994) -
Determination of full piezoelectric complex parameters using gradient-based optimization algorithm
Autor(es):: Kiyono, C.Y
Fecha de publicación:: (2016) -
About the applicability of the Nyquist criterion to distributed parameter systems
Autor(es):: Canetti, Rafael
Fecha de publicación:: (1985) -
Diseño y construcción de un robot posicionador tridimensional
Autor(es):: Canetti, Rafael
Fecha de publicación:: (1990)