Sets with large intersection properties in metric spaces

Negreira, Felipe - Sequeira Manzino, Emiliano

Resumen:

In this work we reproduce the characterization of Gs-sets from the euclidean setting [12] to more general metric spaces. These sets have Hausdorff dimension at least s and are closed by countable intersections, which is particularly useful to estimate the dimension of the so called sets of α-approximable points (that typically appear in Diophantine approximations)


Detalles Bibliográficos
2021
Diophantine approximations
Metric spaces
Net measures
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/38417
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Resumen:
Sumario:Publicado también como: Journal of Mathematical Analysis and Applications, 2022, 511(1). DOI: 10.1016/j.jmaa.2022.126064