Predicción de series temporales utilizando redes neuronales
Supervisor(es): Ferreira, Graciela
Resumen:
Una serie temporal consiste en un conjunto de valores que pueden ser considerados observaciones tomadas de un cierto sistema. En particular, nos interesarán las series generadas por sistemas dinámicos. Dichos sistemas, en algunos casos, pueden ser descritos por un conjunto de ecuaciones, las que modelan el mecanismo subyacente que genera las observaciones; sin embargo, en muchos sistemas reales, esas ecuaciones son desconocidas, y la única información disponible sobre los mismos es una secuencia temporal de medidas, que forma una serie temporal. Asociada a esa serie temporal, suele existir la necesidad práctica de predecirla, es decir, conocer los valores futuros a un instante t dado. Al respecto se pueden tomar dos posturas no excluyentes: desarrollar un modelo que solamente prediga los valores siguientes de la serie, a partir de un cierto conjunto de datos históricos, o bien hacer una reconstrucción dinámica del sistema, es decir, tratar de que el modelo capte además ciertas características del sistema original de forma de hacer corresponder el comportamiento a largo plazo del sistema computacional construido (el modelo) con el exhibido por los datos observados. Los dos enfoques son aplicados en este trabajo y ejemplificados con un caso de estudio: el modelado de las ventas de gas propano licuado envasado en garrafas, tanto para su predicción como para la reconstrucción dinámica del sistema asociado. Adicionalmente se describen el análisis y la selección de las herramientas informáticas disponibles para llevar a cabo esa tarea y se exponen los principales aspectos del estado actual del arte de la teoría asociada al uso de redes neuronales aplicadas a la predicción de series temporales.
2003 | |
REDES NEURONALES SERIES TEMPORALES |
|
Español | |
Universidad de la República | |
COLIBRI | |
http://hdl.handle.net/20.500.12008/2927 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
_version_ | 1807523180160483328 |
---|---|
author | Paggi Straneo, Horacio |
author_facet | Paggi Straneo, Horacio |
author_role | author |
bitstream.checksum.fl_str_mv | 528b6a3c8c7d0c6e28129d576e989607 9833653f73f7853880c94a6fead477b1 4afdbb8c545fd630ea7db775da747b2f 9da0b6dfac957114c6a7714714b86306 606461a8a1e6d58405b8250b4869291d |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/2927/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/2927/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/2927/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/2927/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/2927/1/tesis-paggi.pdf |
collection | COLIBRI |
dc.creator.advisor.none.fl_str_mv | Ferreira, Graciela |
dc.creator.none.fl_str_mv | Paggi Straneo, Horacio |
dc.date.accessioned.none.fl_str_mv | 2014-11-24T22:35:43Z |
dc.date.available.none.fl_str_mv | 2014-11-24T22:35:43Z |
dc.date.issued.es.fl_str_mv | 2003 |
dc.date.submitted.es.fl_str_mv | 20141202 |
dc.description.abstract.none.fl_txt_mv | Una serie temporal consiste en un conjunto de valores que pueden ser considerados observaciones tomadas de un cierto sistema. En particular, nos interesarán las series generadas por sistemas dinámicos. Dichos sistemas, en algunos casos, pueden ser descritos por un conjunto de ecuaciones, las que modelan el mecanismo subyacente que genera las observaciones; sin embargo, en muchos sistemas reales, esas ecuaciones son desconocidas, y la única información disponible sobre los mismos es una secuencia temporal de medidas, que forma una serie temporal. Asociada a esa serie temporal, suele existir la necesidad práctica de predecirla, es decir, conocer los valores futuros a un instante t dado. Al respecto se pueden tomar dos posturas no excluyentes: desarrollar un modelo que solamente prediga los valores siguientes de la serie, a partir de un cierto conjunto de datos históricos, o bien hacer una reconstrucción dinámica del sistema, es decir, tratar de que el modelo capte además ciertas características del sistema original de forma de hacer corresponder el comportamiento a largo plazo del sistema computacional construido (el modelo) con el exhibido por los datos observados. Los dos enfoques son aplicados en este trabajo y ejemplificados con un caso de estudio: el modelado de las ventas de gas propano licuado envasado en garrafas, tanto para su predicción como para la reconstrucción dinámica del sistema asociado. Adicionalmente se describen el análisis y la selección de las herramientas informáticas disponibles para llevar a cabo esa tarea y se exponen los principales aspectos del estado actual del arte de la teoría asociada al uso de redes neuronales aplicadas a la predicción de series temporales. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | PAGGI STRANEO, H. "Predicción de series temporales utilizando redes neuronales". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – CPAP, 2003. |
dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/20.500.12008/2927 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | UR. FI-INCO, |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | REDES NEURONALES SERIES TEMPORALES |
dc.title.none.fl_str_mv | Predicción de series temporales utilizando redes neuronales |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Una serie temporal consiste en un conjunto de valores que pueden ser considerados observaciones tomadas de un cierto sistema. En particular, nos interesarán las series generadas por sistemas dinámicos. Dichos sistemas, en algunos casos, pueden ser descritos por un conjunto de ecuaciones, las que modelan el mecanismo subyacente que genera las observaciones; sin embargo, en muchos sistemas reales, esas ecuaciones son desconocidas, y la única información disponible sobre los mismos es una secuencia temporal de medidas, que forma una serie temporal. Asociada a esa serie temporal, suele existir la necesidad práctica de predecirla, es decir, conocer los valores futuros a un instante t dado. Al respecto se pueden tomar dos posturas no excluyentes: desarrollar un modelo que solamente prediga los valores siguientes de la serie, a partir de un cierto conjunto de datos históricos, o bien hacer una reconstrucción dinámica del sistema, es decir, tratar de que el modelo capte además ciertas características del sistema original de forma de hacer corresponder el comportamiento a largo plazo del sistema computacional construido (el modelo) con el exhibido por los datos observados. Los dos enfoques son aplicados en este trabajo y ejemplificados con un caso de estudio: el modelado de las ventas de gas propano licuado envasado en garrafas, tanto para su predicción como para la reconstrucción dinámica del sistema asociado. Adicionalmente se describen el análisis y la selección de las herramientas informáticas disponibles para llevar a cabo esa tarea y se exponen los principales aspectos del estado actual del arte de la teoría asociada al uso de redes neuronales aplicadas a la predicción de series temporales. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_87c5c7a6e246714764ccbf499a961390 |
identifier_str_mv | PAGGI STRANEO, H. "Predicción de series temporales utilizando redes neuronales". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – CPAP, 2003. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/2927 |
publishDate | 2003 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
spelling | 2014-11-24T22:35:43Z2014-11-24T22:35:43Z200320141202PAGGI STRANEO, H. "Predicción de series temporales utilizando redes neuronales". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – CPAP, 2003.http://hdl.handle.net/20.500.12008/2927Una serie temporal consiste en un conjunto de valores que pueden ser considerados observaciones tomadas de un cierto sistema. En particular, nos interesarán las series generadas por sistemas dinámicos. Dichos sistemas, en algunos casos, pueden ser descritos por un conjunto de ecuaciones, las que modelan el mecanismo subyacente que genera las observaciones; sin embargo, en muchos sistemas reales, esas ecuaciones son desconocidas, y la única información disponible sobre los mismos es una secuencia temporal de medidas, que forma una serie temporal. Asociada a esa serie temporal, suele existir la necesidad práctica de predecirla, es decir, conocer los valores futuros a un instante t dado. Al respecto se pueden tomar dos posturas no excluyentes: desarrollar un modelo que solamente prediga los valores siguientes de la serie, a partir de un cierto conjunto de datos históricos, o bien hacer una reconstrucción dinámica del sistema, es decir, tratar de que el modelo capte además ciertas características del sistema original de forma de hacer corresponder el comportamiento a largo plazo del sistema computacional construido (el modelo) con el exhibido por los datos observados. Los dos enfoques son aplicados en este trabajo y ejemplificados con un caso de estudio: el modelado de las ventas de gas propano licuado envasado en garrafas, tanto para su predicción como para la reconstrucción dinámica del sistema asociado. Adicionalmente se describen el análisis y la selección de las herramientas informáticas disponibles para llevar a cabo esa tarea y se exponen los principales aspectos del estado actual del arte de la teoría asociada al uso de redes neuronales aplicadas a la predicción de series temporales.Made available in DSpace on 2014-11-24T22:35:43Z (GMT). No. of bitstreams: 5 tesis-paggi.pdf: 3687351 bytes, checksum: 606461a8a1e6d58405b8250b4869291d (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2003application/pdfesspaUR. FI-INCO,Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)REDES NEURONALESSERIES TEMPORALESPredicción de series temporales utilizando redes neuronalesTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaPaggi Straneo, HoracioFerreira, GracielaUniversidad de la República (Uruguay). Facultad de Ingeniería. Instituto de Computación – CPAPMagíster en Ingenieria en ComputaciónLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/2927/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/2927/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/2927/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/2927/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALtesis-paggi.pdfapplication/pdf3687351http://localhost:8080/xmlui/bitstream/20.500.12008/2927/1/tesis-paggi.pdf606461a8a1e6d58405b8250b4869291dMD5120.500.12008/29272014-11-24 20:35:43.707oai:colibri.udelar.edu.uy:20.500.12008/2927VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:20.725294COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Predicción de series temporales utilizando redes neuronales Paggi Straneo, Horacio REDES NEURONALES SERIES TEMPORALES |
status_str | acceptedVersion |
title | Predicción de series temporales utilizando redes neuronales |
title_full | Predicción de series temporales utilizando redes neuronales |
title_fullStr | Predicción de series temporales utilizando redes neuronales |
title_full_unstemmed | Predicción de series temporales utilizando redes neuronales |
title_short | Predicción de series temporales utilizando redes neuronales |
title_sort | Predicción de series temporales utilizando redes neuronales |
topic | REDES NEURONALES SERIES TEMPORALES |
url | http://hdl.handle.net/20.500.12008/2927 |