Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real

Gutiérrez Rodríguez, Cecilia Inés - Morero Caño, Julio Enrique

Supervisor(es): Fernández, Eduardo - Aguerre, José Pedro

Resumen:

Los algoritmos de iluminación global son aquellos que buscan aproximar el comportamiento real de la luz. Las técnicas tradicionales son muy costosas para ser usadas en tiempo real, principalmente por el modelado de la iluminación indirecta que es la interacción de la luz entre distintos objetos. Por esta razón surge la idea de aplicar técnicas de Deep Learning para aproximar estos cálculos y reducir los tiempos de ejecución, motivado por su presente éxito en problemas relacionados a imágenes y los crecientes requerimientos por parte de las distintas industrias. En este contexto, este proyecto extiende la técnica llamada Deep Illumination, utilizando Generative Adversarial Networks (GANs) para aprender a generar iluminación indirecta a partir de ciertos buffers geométricos que describen una escena tridimensional. También se incorpora el uso de imágenes en formato High Dynamic Range (HDR) en lugar de formatos Low Dynamic Range (HDR) como jpg o png.


Detalles Bibliográficos
2022
Computación gráfica
Iluminación global
Redes neuronales
Inteligencia artificial
Deep learning
GAN
HDR
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/32373
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523228360376320
author Gutiérrez Rodríguez, Cecilia Inés
author2 Morero Caño, Julio Enrique
author2_role author
author_facet Gutiérrez Rodríguez, Cecilia Inés
Morero Caño, Julio Enrique
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
52bbc8c674145394865eb53e5a8e5241
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/32373/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/32373/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/32373/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/32373/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/32373/1/GM22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Gutiérrez Rodríguez Cecilia Inés, Universidad de la República (Uruguay). Facultad de Ingeniería
Morero Caño Julio Enrique, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Fernández, Eduardo
Aguerre, José Pedro
dc.creator.none.fl_str_mv Gutiérrez Rodríguez, Cecilia Inés
Morero Caño, Julio Enrique
dc.date.accessioned.none.fl_str_mv 2022-06-24T16:43:50Z
dc.date.available.none.fl_str_mv 2022-06-24T16:43:50Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv Los algoritmos de iluminación global son aquellos que buscan aproximar el comportamiento real de la luz. Las técnicas tradicionales son muy costosas para ser usadas en tiempo real, principalmente por el modelado de la iluminación indirecta que es la interacción de la luz entre distintos objetos. Por esta razón surge la idea de aplicar técnicas de Deep Learning para aproximar estos cálculos y reducir los tiempos de ejecución, motivado por su presente éxito en problemas relacionados a imágenes y los crecientes requerimientos por parte de las distintas industrias. En este contexto, este proyecto extiende la técnica llamada Deep Illumination, utilizando Generative Adversarial Networks (GANs) para aprender a generar iluminación indirecta a partir de ciertos buffers geométricos que describen una escena tridimensional. También se incorpora el uso de imágenes en formato High Dynamic Range (HDR) en lugar de formatos Low Dynamic Range (HDR) como jpg o png.
dc.format.extent.es.fl_str_mv 113 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Gutiérrez Rodríguez, C. y Morero Caño, J. Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2022.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/32373
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Computación gráfica
Iluminación global
Redes neuronales
Inteligencia artificial
Deep learning
GAN
HDR
dc.title.none.fl_str_mv Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Los algoritmos de iluminación global son aquellos que buscan aproximar el comportamiento real de la luz. Las técnicas tradicionales son muy costosas para ser usadas en tiempo real, principalmente por el modelado de la iluminación indirecta que es la interacción de la luz entre distintos objetos. Por esta razón surge la idea de aplicar técnicas de Deep Learning para aproximar estos cálculos y reducir los tiempos de ejecución, motivado por su presente éxito en problemas relacionados a imágenes y los crecientes requerimientos por parte de las distintas industrias. En este contexto, este proyecto extiende la técnica llamada Deep Illumination, utilizando Generative Adversarial Networks (GANs) para aprender a generar iluminación indirecta a partir de ciertos buffers geométricos que describen una escena tridimensional. También se incorpora el uso de imágenes en formato High Dynamic Range (HDR) en lugar de formatos Low Dynamic Range (HDR) como jpg o png.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_873d29865c739c092cf129519a3a670a
identifier_str_mv Gutiérrez Rodríguez, C. y Morero Caño, J. Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2022.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/32373
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Gutiérrez Rodríguez Cecilia Inés, Universidad de la República (Uruguay). Facultad de IngenieríaMorero Caño Julio Enrique, Universidad de la República (Uruguay). Facultad de Ingeniería2022-06-24T16:43:50Z2022-06-24T16:43:50Z2022Gutiérrez Rodríguez, C. y Morero Caño, J. Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2022.https://hdl.handle.net/20.500.12008/32373Los algoritmos de iluminación global son aquellos que buscan aproximar el comportamiento real de la luz. Las técnicas tradicionales son muy costosas para ser usadas en tiempo real, principalmente por el modelado de la iluminación indirecta que es la interacción de la luz entre distintos objetos. Por esta razón surge la idea de aplicar técnicas de Deep Learning para aproximar estos cálculos y reducir los tiempos de ejecución, motivado por su presente éxito en problemas relacionados a imágenes y los crecientes requerimientos por parte de las distintas industrias. En este contexto, este proyecto extiende la técnica llamada Deep Illumination, utilizando Generative Adversarial Networks (GANs) para aprender a generar iluminación indirecta a partir de ciertos buffers geométricos que describen una escena tridimensional. También se incorpora el uso de imágenes en formato High Dynamic Range (HDR) en lugar de formatos Low Dynamic Range (HDR) como jpg o png.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2022-06-24T14:42:50Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GM22.pdf: 56807658 bytes, checksum: 52bbc8c674145394865eb53e5a8e5241 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-06-24T16:43:40Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GM22.pdf: 56807658 bytes, checksum: 52bbc8c674145394865eb53e5a8e5241 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-06-24T16:43:50Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GM22.pdf: 56807658 bytes, checksum: 52bbc8c674145394865eb53e5a8e5241 (MD5) Previous issue date: 2022113 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Computación gráficaIluminación globalRedes neuronalesInteligencia artificialDeep learningGANHDRTécnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo realTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGutiérrez Rodríguez, Cecilia InésMorero Caño, Julio EnriqueFernández, EduardoAguerre, José PedroUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/32373/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/32373/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/32373/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/32373/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALGM22.pdfGM22.pdfapplication/pdf56807658http://localhost:8080/xmlui/bitstream/20.500.12008/32373/1/GM22.pdf52bbc8c674145394865eb53e5a8e5241MD5120.500.12008/323732024-04-12 14:06:40.893oai:colibri.udelar.edu.uy:20.500.12008/32373VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:25.403366COLIBRI - Universidad de la Repúblicafalse
spellingShingle Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real
Gutiérrez Rodríguez, Cecilia Inés
Computación gráfica
Iluminación global
Redes neuronales
Inteligencia artificial
Deep learning
GAN
HDR
status_str acceptedVersion
title Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real
title_full Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real
title_fullStr Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real
title_full_unstemmed Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real
title_short Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real
title_sort Técnicas de aprendizaje profundo para el desarrollo de iluminación global en tiempo real
topic Computación gráfica
Iluminación global
Redes neuronales
Inteligencia artificial
Deep learning
GAN
HDR
url https://hdl.handle.net/20.500.12008/32373