Intramuscular fat percentage estimation through ultrasound images

Lecumberry, Federico - Fernández, Alicia - Nunes, José Luis

Resumen:

This work presents a new framework to estimate intramuscular fat percentage (%IMF) on live cattle based on ultrasound images. The %IMF measured in the longissimus dorsi muscle between the 12th and 13th rib is highly correlated with beef tenderness, one of the most determinant factors in meat quality pointed by consumers. Therefore, an automatic procedure for the estimation of this parameter is highly desirable. The proposed framework automatically determine a region of interest (ROI) in the acquired images dened by structures present in the image such as the subcutaneous fat and the ribs. A set of forty two features are extracted from each cropped ROI. These features are based on statistics and transformation of the ROI, for example, texture descriptors such as Local Binary Pattern, co-occurrence matrix, histograms, Fourier Transform coecients, among others. A feature extraction step is performed based in Principal Components Analysis, in order to reduce the number of dimensions and improve the computational performance. The new space of features triples the correlation with the real %IMF. As a result of this step, a feature vector of ten components is obtained, which accumulates 99% of the variance. The estimation of the %IMF is performed in this ten-dimensional space training a model based on Support Vector Regression (SVR), using a radial basis function as a kernel. For this kernel, the variance of kernel function and the tolerance parameters were optimized in the train stage. The framework is validated in a database of 283 ultrasound images obtained from 71 live steers. The acquisition was carried out by a trained professional in animal production. An estimation of the %IMF was obtained by an expert based in the ultrasound image aided with a commercial software. Also a standardized chemical analysis of the beef, with an error lower than 0.3,% was performed obtaining a ground-truth value for the %IMF. The database was divided into two sets randomly drawn, one to train the algorithm and compute the regression coecients and the other to test it. This procedure was repeated 100 times, varying the test and training set, and their average is presented here. The performance is measured using the Root-Mean-Square Error (RMSE), resulting in an improvement of 21% on the measurement compared with the estimation obtained by the expert with the software. The proposed framework shows promising results for a fully automatic procedure.


Detalles Bibliográficos
2014
Ultrasound images
Feature extraction
Intramuscular fat estimation
Beef quality
Support vector regression
Procesamiento de Señales
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/41816
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522939248050176
author Lecumberry, Federico
author2 Fernández, Alicia
Nunes, José Luis
author2_role author
author
author_facet Lecumberry, Federico
Fernández, Alicia
Nunes, José Luis
author_role author
bitstream.checksum.fl_str_mv 528b6a3c8c7d0c6e28129d576e989607
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
b8b81908ec7a315edddbdd3a1e808bbd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/41816/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/41816/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/41816/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/41816/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/41816/1/NFL14.pdf
collection COLIBRI
dc.creator.none.fl_str_mv Lecumberry, Federico
Fernández, Alicia
Nunes, José Luis
dc.date.accessioned.none.fl_str_mv 2023-12-11T19:57:54Z
dc.date.available.none.fl_str_mv 2023-12-11T19:57:54Z
dc.date.issued.es.fl_str_mv 2014
dc.date.submitted.es.fl_str_mv 20231211
dc.description.abstract.none.fl_txt_mv This work presents a new framework to estimate intramuscular fat percentage (%IMF) on live cattle based on ultrasound images. The %IMF measured in the longissimus dorsi muscle between the 12th and 13th rib is highly correlated with beef tenderness, one of the most determinant factors in meat quality pointed by consumers. Therefore, an automatic procedure for the estimation of this parameter is highly desirable. The proposed framework automatically determine a region of interest (ROI) in the acquired images dened by structures present in the image such as the subcutaneous fat and the ribs. A set of forty two features are extracted from each cropped ROI. These features are based on statistics and transformation of the ROI, for example, texture descriptors such as Local Binary Pattern, co-occurrence matrix, histograms, Fourier Transform coecients, among others. A feature extraction step is performed based in Principal Components Analysis, in order to reduce the number of dimensions and improve the computational performance. The new space of features triples the correlation with the real %IMF. As a result of this step, a feature vector of ten components is obtained, which accumulates 99% of the variance. The estimation of the %IMF is performed in this ten-dimensional space training a model based on Support Vector Regression (SVR), using a radial basis function as a kernel. For this kernel, the variance of kernel function and the tolerance parameters were optimized in the train stage. The framework is validated in a database of 283 ultrasound images obtained from 71 live steers. The acquisition was carried out by a trained professional in animal production. An estimation of the %IMF was obtained by an expert based in the ultrasound image aided with a commercial software. Also a standardized chemical analysis of the beef, with an error lower than 0.3,% was performed obtaining a ground-truth value for the %IMF. The database was divided into two sets randomly drawn, one to train the algorithm and compute the regression coecients and the other to test it. This procedure was repeated 100 times, varying the test and training set, and their average is presented here. The performance is measured using the Root-Mean-Square Error (RMSE), resulting in an improvement of 21% on the measurement compared with the estimation obtained by the expert with the software. The proposed framework shows promising results for a fully automatic procedure.
dc.identifier.citation.es.fl_str_mv Nunes, J.L, Fernandez, A, Lecumberry, F. "Intramuscular fat percentage estimation through ultrasound images" PRIB 2014, LNBI 8626, pp. 116–122, 2014.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/41816
dc.language.iso.none.fl_str_mv en
eng
dc.relation.ispartof.es.fl_str_mv Internacional , PRIB 2014- Pattern Recognition in Bioinformatics , Estocolmo - Suecia , 2014
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Ultrasound images
Feature extraction
Intramuscular fat estimation
Beef quality
Support vector regression
dc.subject.other.es.fl_str_mv Procesamiento de Señales
dc.title.none.fl_str_mv Intramuscular fat percentage estimation through ultrasound images
dc.type.es.fl_str_mv Ponencia
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description This work presents a new framework to estimate intramuscular fat percentage (%IMF) on live cattle based on ultrasound images. The %IMF measured in the longissimus dorsi muscle between the 12th and 13th rib is highly correlated with beef tenderness, one of the most determinant factors in meat quality pointed by consumers. Therefore, an automatic procedure for the estimation of this parameter is highly desirable. The proposed framework automatically determine a region of interest (ROI) in the acquired images dened by structures present in the image such as the subcutaneous fat and the ribs. A set of forty two features are extracted from each cropped ROI. These features are based on statistics and transformation of the ROI, for example, texture descriptors such as Local Binary Pattern, co-occurrence matrix, histograms, Fourier Transform coecients, among others. A feature extraction step is performed based in Principal Components Analysis, in order to reduce the number of dimensions and improve the computational performance. The new space of features triples the correlation with the real %IMF. As a result of this step, a feature vector of ten components is obtained, which accumulates 99% of the variance. The estimation of the %IMF is performed in this ten-dimensional space training a model based on Support Vector Regression (SVR), using a radial basis function as a kernel. For this kernel, the variance of kernel function and the tolerance parameters were optimized in the train stage. The framework is validated in a database of 283 ultrasound images obtained from 71 live steers. The acquisition was carried out by a trained professional in animal production. An estimation of the %IMF was obtained by an expert based in the ultrasound image aided with a commercial software. Also a standardized chemical analysis of the beef, with an error lower than 0.3,% was performed obtaining a ground-truth value for the %IMF. The database was divided into two sets randomly drawn, one to train the algorithm and compute the regression coecients and the other to test it. This procedure was repeated 100 times, varying the test and training set, and their average is presented here. The performance is measured using the Root-Mean-Square Error (RMSE), resulting in an improvement of 21% on the measurement compared with the estimation obtained by the expert with the software. The proposed framework shows promising results for a fully automatic procedure.
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_87395a171011a854767180610fd54b5e
identifier_str_mv Nunes, J.L, Fernandez, A, Lecumberry, F. "Intramuscular fat percentage estimation through ultrasound images" PRIB 2014, LNBI 8626, pp. 116–122, 2014.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/41816
publishDate 2014
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling 2023-12-11T19:57:54Z2023-12-11T19:57:54Z201420231211Nunes, J.L, Fernandez, A, Lecumberry, F. "Intramuscular fat percentage estimation through ultrasound images" PRIB 2014, LNBI 8626, pp. 116–122, 2014.https://hdl.handle.net/20.500.12008/41816This work presents a new framework to estimate intramuscular fat percentage (%IMF) on live cattle based on ultrasound images. The %IMF measured in the longissimus dorsi muscle between the 12th and 13th rib is highly correlated with beef tenderness, one of the most determinant factors in meat quality pointed by consumers. Therefore, an automatic procedure for the estimation of this parameter is highly desirable. The proposed framework automatically determine a region of interest (ROI) in the acquired images dened by structures present in the image such as the subcutaneous fat and the ribs. A set of forty two features are extracted from each cropped ROI. These features are based on statistics and transformation of the ROI, for example, texture descriptors such as Local Binary Pattern, co-occurrence matrix, histograms, Fourier Transform coecients, among others. A feature extraction step is performed based in Principal Components Analysis, in order to reduce the number of dimensions and improve the computational performance. The new space of features triples the correlation with the real %IMF. As a result of this step, a feature vector of ten components is obtained, which accumulates 99% of the variance. The estimation of the %IMF is performed in this ten-dimensional space training a model based on Support Vector Regression (SVR), using a radial basis function as a kernel. For this kernel, the variance of kernel function and the tolerance parameters were optimized in the train stage. The framework is validated in a database of 283 ultrasound images obtained from 71 live steers. The acquisition was carried out by a trained professional in animal production. An estimation of the %IMF was obtained by an expert based in the ultrasound image aided with a commercial software. Also a standardized chemical analysis of the beef, with an error lower than 0.3,% was performed obtaining a ground-truth value for the %IMF. The database was divided into two sets randomly drawn, one to train the algorithm and compute the regression coecients and the other to test it. This procedure was repeated 100 times, varying the test and training set, and their average is presented here. The performance is measured using the Root-Mean-Square Error (RMSE), resulting in an improvement of 21% on the measurement compared with the estimation obtained by the expert with the software. The proposed framework shows promising results for a fully automatic procedure.Made available in DSpace on 2023-12-11T19:57:54Z (GMT). No. of bitstreams: 5 NFL14.pdf: 438572 bytes, checksum: b8b81908ec7a315edddbdd3a1e808bbd (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2014enengInternacional , PRIB 2014- Pattern Recognition in Bioinformatics , Estocolmo - Suecia , 2014Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Ultrasound imagesFeature extractionIntramuscular fat estimationBeef qualitySupport vector regressionProcesamiento de SeñalesIntramuscular fat percentage estimation through ultrasound imagesPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaLecumberry, FedericoFernández, AliciaNunes, José LuisProcesamiento de SeñalesTratamiento de ImágenesLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/41816/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/41816/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/41816/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/41816/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALNFL14.pdfapplication/pdf438572http://localhost:8080/xmlui/bitstream/20.500.12008/41816/1/NFL14.pdfb8b81908ec7a315edddbdd3a1e808bbdMD5120.500.12008/418162024-07-24 17:25:48.619oai:colibri.udelar.edu.uy:20.500.12008/41816VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:42.150166COLIBRI - Universidad de la Repúblicafalse
spellingShingle Intramuscular fat percentage estimation through ultrasound images
Lecumberry, Federico
Ultrasound images
Feature extraction
Intramuscular fat estimation
Beef quality
Support vector regression
Procesamiento de Señales
status_str publishedVersion
title Intramuscular fat percentage estimation through ultrasound images
title_full Intramuscular fat percentage estimation through ultrasound images
title_fullStr Intramuscular fat percentage estimation through ultrasound images
title_full_unstemmed Intramuscular fat percentage estimation through ultrasound images
title_short Intramuscular fat percentage estimation through ultrasound images
title_sort Intramuscular fat percentage estimation through ultrasound images
topic Ultrasound images
Feature extraction
Intramuscular fat estimation
Beef quality
Support vector regression
Procesamiento de Señales
url https://hdl.handle.net/20.500.12008/41816