Energy-aware scheduling in heterogeneous computing systems

Iturriaga, Santiago

Supervisor(es): Nesmachnow, Sergio - Dorronsoro, Bernabé

Resumen:

In the last decade, the grid computing systems emerged as useful provider of the computing power required for solving complex problems. The classic formulation of the scheduling problem in heterogeneous computing systems is NP-hard, thus approximation techniques are required for solving real-world scenarios of this problem. This thesis tackles the problem of scheduling tasks in a heterogeneous computing environment in reduced execution times, considering the schedule length and the total energy consumption as the optimization objectives. An efficient multithreading local search algorithm for solving the multi-objective scheduling problem in heterogeneous computing systems, named MEMLS, is presented. The proposed method follows a fully multi-objective approach, applying a Pareto-based dominance search that is executed in parallel by using several threads. The experimental analysis demonstrates that the new multithreading algorithm outperforms a set of fast and accurate two-phase deterministic heuristics based on the traditional MinMin. The new ME-MLS method is able to achieve significant improvements in both makespan and energy consumption objectives in reduced execution times for a large set of testbed instances, while exhibiting very good scalability. The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and 64 machines. In order to scale the dimension of the problem instances even further and tackle large-sized problem instances, the Graphical Processing Unit (GPU) architecture is considered. This line of future work has been initially tackled with the gPALS: a hybrid CPU/GPU local search algorithm for efficiently tackling a single-objective heterogeneous computing scheduling problem. The gPALS shows very promising results, being able to tackle instances of up to 32768 tasks and 1024 machines in reasonable execution times.


En la última década, los sistemas de computación grid se han convertido en útiles proveedores de la capacidad de cálculo necesaria para la resolución de problemas complejos. En su formulación clásica, el problema de la planificación de tareas en sistemas heterogéneos es un problema NP difícil, por lo que se requieren técnicas de resolución aproximadas para atacar instancias de tamaño realista de este problema. Esta tesis aborda el problema de la planificación de tareas en sistemas heterogéneos, considerando el largo de la planificación y el consumo energético como objetivos a optimizar. Para la resolución de este problema se propone un algoritmo de búsqueda local eficiente y multihilo. El método propuesto se trata de un enfoque plenamente multiobjetivo que consiste en la aplicación de una búsqueda basada en dominancia de Pareto que se ejecuta en paralelo mediante el uso de varios hilos de ejecución. El análisis experimental demuestra que el algoritmo multithilado propuesto supera a un conjunto de heurísticas deterministas rápidas y e caces basadas en el algoritmo MinMin tradicional. El nuevo método, ME-MLS, es capaz de lograr mejoras significativas tanto en el largo de la planificación y como en consumo energético, en tiempos de ejecución reducidos para un gran número de casos de prueba, mientras que exhibe una escalabilidad muy promisoria. El ME-MLS fue evaluado abordando instancias de hasta 2048 tareas y 64 máquinas. Con el n de aumentar la dimensión de las instancias abordadas y hacer frente a instancias de gran tamaño, se consideró la utilización de la arquitectura provista por las unidades de procesamiento gráfico (GPU). Esta línea de trabajo futuro ha sido abordada inicialmente con el algoritmo gPALS: un algoritmo híbrido CPU/GPU de búsqueda local para la planificación de tareas en en sistemas heterogéneos considerando el largo de la planificación como único objetivo. La evaluación del algoritmo gPALS ha mostrado resultados muy prometedores, siendo capaz de abordar instancias de hasta 32768 tareas y 1024 máquinas en tiempos de ejecución razonables.


Detalles Bibliográficos
2013
Metaheuristic algorithms
Scheduling
Heterogeneous computing
Grid computing
Algoritmos metaheurísticos
Planificación de tareas
Computación heterogénea
Computación grid
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/33370
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523182660288512
author Iturriaga, Santiago
author_facet Iturriaga, Santiago
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
613a33f32441774810d560d44a789f57
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/33370/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/33370/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/33370/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/33370/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/33370/1/Itu13.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Iturriaga Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Nesmachnow, Sergio
Dorronsoro, Bernabé
dc.creator.none.fl_str_mv Iturriaga, Santiago
dc.date.accessioned.none.fl_str_mv 2022-08-29T12:11:28Z
dc.date.available.none.fl_str_mv 2022-08-29T12:11:28Z
dc.date.issued.none.fl_str_mv 2013
dc.description.abstract.none.fl_txt_mv In the last decade, the grid computing systems emerged as useful provider of the computing power required for solving complex problems. The classic formulation of the scheduling problem in heterogeneous computing systems is NP-hard, thus approximation techniques are required for solving real-world scenarios of this problem. This thesis tackles the problem of scheduling tasks in a heterogeneous computing environment in reduced execution times, considering the schedule length and the total energy consumption as the optimization objectives. An efficient multithreading local search algorithm for solving the multi-objective scheduling problem in heterogeneous computing systems, named MEMLS, is presented. The proposed method follows a fully multi-objective approach, applying a Pareto-based dominance search that is executed in parallel by using several threads. The experimental analysis demonstrates that the new multithreading algorithm outperforms a set of fast and accurate two-phase deterministic heuristics based on the traditional MinMin. The new ME-MLS method is able to achieve significant improvements in both makespan and energy consumption objectives in reduced execution times for a large set of testbed instances, while exhibiting very good scalability. The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and 64 machines. In order to scale the dimension of the problem instances even further and tackle large-sized problem instances, the Graphical Processing Unit (GPU) architecture is considered. This line of future work has been initially tackled with the gPALS: a hybrid CPU/GPU local search algorithm for efficiently tackling a single-objective heterogeneous computing scheduling problem. The gPALS shows very promising results, being able to tackle instances of up to 32768 tasks and 1024 machines in reasonable execution times.
En la última década, los sistemas de computación grid se han convertido en útiles proveedores de la capacidad de cálculo necesaria para la resolución de problemas complejos. En su formulación clásica, el problema de la planificación de tareas en sistemas heterogéneos es un problema NP difícil, por lo que se requieren técnicas de resolución aproximadas para atacar instancias de tamaño realista de este problema. Esta tesis aborda el problema de la planificación de tareas en sistemas heterogéneos, considerando el largo de la planificación y el consumo energético como objetivos a optimizar. Para la resolución de este problema se propone un algoritmo de búsqueda local eficiente y multihilo. El método propuesto se trata de un enfoque plenamente multiobjetivo que consiste en la aplicación de una búsqueda basada en dominancia de Pareto que se ejecuta en paralelo mediante el uso de varios hilos de ejecución. El análisis experimental demuestra que el algoritmo multithilado propuesto supera a un conjunto de heurísticas deterministas rápidas y e caces basadas en el algoritmo MinMin tradicional. El nuevo método, ME-MLS, es capaz de lograr mejoras significativas tanto en el largo de la planificación y como en consumo energético, en tiempos de ejecución reducidos para un gran número de casos de prueba, mientras que exhibe una escalabilidad muy promisoria. El ME-MLS fue evaluado abordando instancias de hasta 2048 tareas y 64 máquinas. Con el n de aumentar la dimensión de las instancias abordadas y hacer frente a instancias de gran tamaño, se consideró la utilización de la arquitectura provista por las unidades de procesamiento gráfico (GPU). Esta línea de trabajo futuro ha sido abordada inicialmente con el algoritmo gPALS: un algoritmo híbrido CPU/GPU de búsqueda local para la planificación de tareas en en sistemas heterogéneos considerando el largo de la planificación como único objetivo. La evaluación del algoritmo gPALS ha mostrado resultados muy prometedores, siendo capaz de abordar instancias de hasta 32768 tareas y 1024 máquinas en tiempos de ejecución razonables.
dc.format.extent.es.fl_str_mv 118 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Iturriaga, S. Energy-aware scheduling in heterogeneous computing systems [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2013.
dc.identifier.issn.none.fl_str_mv 0797-6410
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/33370
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar. FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Metaheuristic algorithms
Scheduling
Heterogeneous computing
Grid computing
Algoritmos metaheurísticos
Planificación de tareas
Computación heterogénea
Computación grid
dc.title.none.fl_str_mv Energy-aware scheduling in heterogeneous computing systems
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description In the last decade, the grid computing systems emerged as useful provider of the computing power required for solving complex problems. The classic formulation of the scheduling problem in heterogeneous computing systems is NP-hard, thus approximation techniques are required for solving real-world scenarios of this problem. This thesis tackles the problem of scheduling tasks in a heterogeneous computing environment in reduced execution times, considering the schedule length and the total energy consumption as the optimization objectives. An efficient multithreading local search algorithm for solving the multi-objective scheduling problem in heterogeneous computing systems, named MEMLS, is presented. The proposed method follows a fully multi-objective approach, applying a Pareto-based dominance search that is executed in parallel by using several threads. The experimental analysis demonstrates that the new multithreading algorithm outperforms a set of fast and accurate two-phase deterministic heuristics based on the traditional MinMin. The new ME-MLS method is able to achieve significant improvements in both makespan and energy consumption objectives in reduced execution times for a large set of testbed instances, while exhibiting very good scalability. The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and 64 machines. In order to scale the dimension of the problem instances even further and tackle large-sized problem instances, the Graphical Processing Unit (GPU) architecture is considered. This line of future work has been initially tackled with the gPALS: a hybrid CPU/GPU local search algorithm for efficiently tackling a single-objective heterogeneous computing scheduling problem. The gPALS shows very promising results, being able to tackle instances of up to 32768 tasks and 1024 machines in reasonable execution times.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_862aff37b512c79aa9685c99d84eb3c8
identifier_str_mv Iturriaga, S. Energy-aware scheduling in heterogeneous computing systems [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2013.
0797-6410
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/33370
publishDate 2013
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Iturriaga Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería.2022-08-29T12:11:28Z2022-08-29T12:11:28Z2013Iturriaga, S. Energy-aware scheduling in heterogeneous computing systems [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO : PEDECIBA. Área Informática, 2013.0797-6410https://hdl.handle.net/20.500.12008/33370In the last decade, the grid computing systems emerged as useful provider of the computing power required for solving complex problems. The classic formulation of the scheduling problem in heterogeneous computing systems is NP-hard, thus approximation techniques are required for solving real-world scenarios of this problem. This thesis tackles the problem of scheduling tasks in a heterogeneous computing environment in reduced execution times, considering the schedule length and the total energy consumption as the optimization objectives. An efficient multithreading local search algorithm for solving the multi-objective scheduling problem in heterogeneous computing systems, named MEMLS, is presented. The proposed method follows a fully multi-objective approach, applying a Pareto-based dominance search that is executed in parallel by using several threads. The experimental analysis demonstrates that the new multithreading algorithm outperforms a set of fast and accurate two-phase deterministic heuristics based on the traditional MinMin. The new ME-MLS method is able to achieve significant improvements in both makespan and energy consumption objectives in reduced execution times for a large set of testbed instances, while exhibiting very good scalability. The ME-MLS was evaluated solving instances comprised of up to 2048 tasks and 64 machines. In order to scale the dimension of the problem instances even further and tackle large-sized problem instances, the Graphical Processing Unit (GPU) architecture is considered. This line of future work has been initially tackled with the gPALS: a hybrid CPU/GPU local search algorithm for efficiently tackling a single-objective heterogeneous computing scheduling problem. The gPALS shows very promising results, being able to tackle instances of up to 32768 tasks and 1024 machines in reasonable execution times.En la última década, los sistemas de computación grid se han convertido en útiles proveedores de la capacidad de cálculo necesaria para la resolución de problemas complejos. En su formulación clásica, el problema de la planificación de tareas en sistemas heterogéneos es un problema NP difícil, por lo que se requieren técnicas de resolución aproximadas para atacar instancias de tamaño realista de este problema. Esta tesis aborda el problema de la planificación de tareas en sistemas heterogéneos, considerando el largo de la planificación y el consumo energético como objetivos a optimizar. Para la resolución de este problema se propone un algoritmo de búsqueda local eficiente y multihilo. El método propuesto se trata de un enfoque plenamente multiobjetivo que consiste en la aplicación de una búsqueda basada en dominancia de Pareto que se ejecuta en paralelo mediante el uso de varios hilos de ejecución. El análisis experimental demuestra que el algoritmo multithilado propuesto supera a un conjunto de heurísticas deterministas rápidas y e caces basadas en el algoritmo MinMin tradicional. El nuevo método, ME-MLS, es capaz de lograr mejoras significativas tanto en el largo de la planificación y como en consumo energético, en tiempos de ejecución reducidos para un gran número de casos de prueba, mientras que exhibe una escalabilidad muy promisoria. El ME-MLS fue evaluado abordando instancias de hasta 2048 tareas y 64 máquinas. Con el n de aumentar la dimensión de las instancias abordadas y hacer frente a instancias de gran tamaño, se consideró la utilización de la arquitectura provista por las unidades de procesamiento gráfico (GPU). Esta línea de trabajo futuro ha sido abordada inicialmente con el algoritmo gPALS: un algoritmo híbrido CPU/GPU de búsqueda local para la planificación de tareas en en sistemas heterogéneos considerando el largo de la planificación como único objetivo. La evaluación del algoritmo gPALS ha mostrado resultados muy prometedores, siendo capaz de abordar instancias de hasta 32768 tareas y 1024 máquinas en tiempos de ejecución razonables.Submitted by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-24T18:40:30Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Itu13.pdf: 2035197 bytes, checksum: 613a33f32441774810d560d44a789f57 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-24T19:46:01Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Itu13.pdf: 2035197 bytes, checksum: 613a33f32441774810d560d44a789f57 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-08-29T12:11:28Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Itu13.pdf: 2035197 bytes, checksum: 613a33f32441774810d560d44a789f57 (MD5) Previous issue date: 2013118 p.application/pdfenengUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Metaheuristic algorithmsSchedulingHeterogeneous computingGrid computingAlgoritmos metaheurísticosPlanificación de tareasComputación heterogéneaComputación gridEnergy-aware scheduling in heterogeneous computing systemsTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaIturriaga, SantiagoNesmachnow, SergioDorronsoro, BernabéUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/33370/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/33370/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/33370/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/33370/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALItu13.pdfItu13.pdfapplication/pdf2035197http://localhost:8080/xmlui/bitstream/20.500.12008/33370/1/Itu13.pdf613a33f32441774810d560d44a789f57MD5120.500.12008/333702022-08-29 09:11:28.377oai:colibri.udelar.edu.uy:20.500.12008/33370VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:28.513538COLIBRI - Universidad de la Repúblicafalse
spellingShingle Energy-aware scheduling in heterogeneous computing systems
Iturriaga, Santiago
Metaheuristic algorithms
Scheduling
Heterogeneous computing
Grid computing
Algoritmos metaheurísticos
Planificación de tareas
Computación heterogénea
Computación grid
status_str acceptedVersion
title Energy-aware scheduling in heterogeneous computing systems
title_full Energy-aware scheduling in heterogeneous computing systems
title_fullStr Energy-aware scheduling in heterogeneous computing systems
title_full_unstemmed Energy-aware scheduling in heterogeneous computing systems
title_short Energy-aware scheduling in heterogeneous computing systems
title_sort Energy-aware scheduling in heterogeneous computing systems
topic Metaheuristic algorithms
Scheduling
Heterogeneous computing
Grid computing
Algoritmos metaheurísticos
Planificación de tareas
Computación heterogénea
Computación grid
url https://hdl.handle.net/20.500.12008/33370