Experimental and theoretical developments for the acoustoelastic characterization and stress-monitoring of concrete materials and structures
Supervisor(es): Cetrangolo, Gonzalo P. - Popovics, John S. - Aulet, Alina
Resumen:
Condition assessment of civil infrastructure often requires knowing the current stress acting on a given structural member. However, the development of an efficient nondestructive testing (NDT) technique for estimating current stresses in structural concrete elements remains open. To this end, previous research have studied the dependence of mechanical wave speed with applied stress, “the acoustoelastic effect”. Recent research on concrete elements under uniaxial compression has shown that the acoustoelastic effect can also be detected with techniques based on vibration phenomena, which offers several benefits. This thesis focuses on studying, documenting and improving the use of resonance vibration for acoustoelastic characterization and current stress determination of slender concrete structural elements under compression. An exhaustive theoretical development using analytical and numerical methods is provided, where the torsional vibration mode is selected over other vibration modes. The nonlinear material parameter βG is defined based on torsional vibration, which corresponds to the rate of change of the elastic shear modulus G with respect to the uniaxial strain. The expression of βG is analytically calculated with respect to the second and third-order elastic constants (l, m, and n) and numerically verified with finite element method (FEM) models. The effect of non-uniform torsion (warping), geometric nonlinearity (P-δ effect) and changing boundary conditions is studied analytically, numerically and experimentally, to assess their effect on βG. Experiments are carried out for three concrete mixture designs using prismatic specimens of dimensions 15 × 15 × 60 cm3; values of βG are calculated for these specimens submitted to several loading and unloading cycles, which proves the existence, dominance and repeatability of the acoustoelastic effect: torsional frequency of vibration increases with increasing compressive strains (and stresses) in elongated elements. A second experimental campaign is conducted using ultrasonic wave propagation and torsional vibration techniques simultaneously on the same mortar specimen. Conversely to the theoretical predictions based on acoustoelasticity, ultrasonic results yield a βG value an order of magnitude lower than the torsional vibration-based βG. To address this apparent contradiction the theory is completed heuristically by accounting for the slight material viscosity. Finally, a case of study of a real size post-tensioned-concrete nuclear-containment structure is presented, where the containment is submitted to gradual internal pressure. Frequencies of vibration are identified using an output-only sensing system and the tracked frequencies are correlated with internal pressure. Both the experiment and an FEM model show that frequencies of vibration increase with increasing internal pressure suggesting that geometric nonlinearity dominates over acoustoelastic effects in this case.
Para evaluar el estado de las estructuras civiles es frecuentemente necesario conocer el nivel de tensión que soportan los distintos elementos estructurales. Sin embargo, el desarrollo de técnicas eficientes de ensayos no destructivos para la estimación de tensiones de estructuras de hormigón sigue siendo un tema abierto. Con este fin, investigaciones anteriores han estudiado la dependencia de la velocidad de propagación de ondas mecánicas con la tensión aplicada, esto es el "efecto acustoelástico". Estudios recientes en elementos de hormigón sometidos a compresión axial han mostrado que el efecto acustoelástico también puede ser detectado con técnicas basadas en fenómenos de vibración, lo que ofrece varias ventajas. Esta tesis se centra en el estudio, documentación y mejora del uso de técnicas de vibración (resonancia) para la caracterización acustoelástica y la determinación de tensiones en elementos estructurales alargados de hormigón, sometidos a compresión axial. Se incluye un desarrollo teórico exhaustivo con métodos analíticos y numéricos, donde el modo de vibración torsional se elige frente a los otros posibles modos de vibración. El parámetro nolineal material βG se define en base a la vibración torsional, que corresponde a la tasa de cambio del módulo elástico de corte G respecto a la deformación axial. La expresión de βG se calcula analíticamente respecto a las constantes elásticas de segundo y tercer orden (l, m, y n) y se verifica numéricamente usando modelos de elementos finitos. Los efectos de la torsión no uniforme (alabeo), la no-linealidad geométrica (efecto P-δ) y el del cambio de las condiciones de borde, son estudiados analítica, numérica y experimentalmente, para evaluar su efecto en βG. Se realizan experimentos para tres mezlcas de hormigón usando tres especímenes prismáticos de dimensiones 15 × 15 × 60 cm3; los valores de βG se calculan para estos tres especímenes sometiéndolos a varios ciclos de carga y descarga, lo que prueba la existencia, dominio y repetitividad del efecto acustoelástico: la frecuencia de vibración torsional aumenta al aumentar las deformaciones (y tensiones) de compresión en elementos alargados. Una segunda campaña experimental es realizada usando las técnicas de propagación de ondas ultrasónicas y vibración torsional simultáneamente en el mismo especimen de mortero. Contrariamente a las predicciones teóricas basadas en la acustoelasticidad, el ultrasonido arroja resultados de βG un orden de magnitud menor que los resultados de βG que arroja la vibración torsional. Para afrontar esta aparente contradicción, la teoría se completa heurísticamente teniendo en cuenta fenómenos menores de viscosidad. Finalmente, se presenta un caso de estudio de un estructura a escala real, un tanque de hormigón postensado para la contención de material nuclear, el cual se somete a incrementos graduales de presión interior. Se identifican las frecuencias de vibración usando un sistema de medición basado en técnicas de análisis modal operacional y se observa que las frecuencias de vibración se correlacionan con la presión interna. Tanto el experimento como el modelo de elementos finitos muestran que las frequencias de vibración aumentan al aumentar la presión interna, sugiriendo que, en este caso, la no-linealidad geométrica domina frente a los efectos acustoelásticos.
2020 | |
Nondestructive testing Vibration analysis Ultrasound Material nonlinearity Torsion Ensayos no destructivos Análisis de vibración No-linealidad material Ultrasonido |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/26380 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Sumario: | Condition assessment of civil infrastructure often requires knowing the current stress acting on a given structural member. However, the development of an efficient nondestructive testing (NDT) technique for estimating current stresses in structural concrete elements remains open. To this end, previous research have studied the dependence of mechanical wave speed with applied stress, “the acoustoelastic effect”. Recent research on concrete elements under uniaxial compression has shown that the acoustoelastic effect can also be detected with techniques based on vibration phenomena, which offers several benefits. This thesis focuses on studying, documenting and improving the use of resonance vibration for acoustoelastic characterization and current stress determination of slender concrete structural elements under compression. An exhaustive theoretical development using analytical and numerical methods is provided, where the torsional vibration mode is selected over other vibration modes. The nonlinear material parameter βG is defined based on torsional vibration, which corresponds to the rate of change of the elastic shear modulus G with respect to the uniaxial strain. The expression of βG is analytically calculated with respect to the second and third-order elastic constants (l, m, and n) and numerically verified with finite element method (FEM) models. The effect of non-uniform torsion (warping), geometric nonlinearity (P-δ effect) and changing boundary conditions is studied analytically, numerically and experimentally, to assess their effect on βG. Experiments are carried out for three concrete mixture designs using prismatic specimens of dimensions 15 × 15 × 60 cm3; values of βG are calculated for these specimens submitted to several loading and unloading cycles, which proves the existence, dominance and repeatability of the acoustoelastic effect: torsional frequency of vibration increases with increasing compressive strains (and stresses) in elongated elements. A second experimental campaign is conducted using ultrasonic wave propagation and torsional vibration techniques simultaneously on the same mortar specimen. Conversely to the theoretical predictions based on acoustoelasticity, ultrasonic results yield a βG value an order of magnitude lower than the torsional vibration-based βG. To address this apparent contradiction the theory is completed heuristically by accounting for the slight material viscosity. Finally, a case of study of a real size post-tensioned-concrete nuclear-containment structure is presented, where the containment is submitted to gradual internal pressure. Frequencies of vibration are identified using an output-only sensing system and the tracked frequencies are correlated with internal pressure. Both the experiment and an FEM model show that frequencies of vibration increase with increasing internal pressure suggesting that geometric nonlinearity dominates over acoustoelastic effects in this case. |
---|