Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos
Resumen:
Este trabajo estaba basado en el artículo Bayesian inference and model comparison for metallic fatigue data, con I. Babuska, Z. Sawlan, B. Szabo y R. Tempone, publicado en https://arxiv.org/abs/1512.01779. En este trabajo exponemos un tratamiento estadístico de datos extraídos de un conjunto de registros de experimentos de fatiga que se realizaron en las aleaciones de aluminio 75S-T6. Nuestro objetivo principal es predecir la vida de fatiga de materiales, proporcionando un enfoque sistemático para la calibración y clasificación de los modelos propuestos con referencia a los datos de fatiga. A tal efecto, consideramos varios modelos estadísticos con límite de fatiga y con límite de fatiga aleatorio adecuados para el tratamiento de datos censurados a la derecha. En primer lugar, ajustamos los modelos a los datos por el método de máxima verosimi- litud y estimamos las cuantas de la distribución de vida de las aleaciones. La robustez de dichas estimaciones es evaluada por medio de intervalos de confanza obtenidos con una técnica de remuestreo estratificado respecto del ciclo de carga repetida. Una primera clasificación de los modelos adoptados es llevada a cabo a través de medidas clásicas de ajuste basadas en criterios de información. En segundo lugar, ampliamos el alcance de nuestro estudio considerando un enfoque Bayesiano. Dado el escenario a priori seleccionado por el usuario para incorporar el cono- cimiento disponible sobre los parámetros físicos de interés, se obtienen las distribuciones a posteriori aproximadas de dichos parámetros basadas en técnicas de simulación. Para clasificar los modelos Bayesianos y determinar que modelo sería preferible para un de- terminado escenario a priori, hemos aplicado tanto métodos basados en la estimación de la verosimilitud marginal como en modernos criterios de información de tipo predictivo, cuya aplicación requiere el uso de técnicas de validación cruzada.
2016 | |
Datos de fatiga Predicción de vida de fatiga Modelos con límite de fatiga aleatorio Calibración y clasificación de modelos Bayesianos Precisión predictiva de modelos Bayesianos |
|
Español | |
Universidad de la República | |
COLIBRI | |
http://hdl.handle.net/20.500.12008/10534 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
_version_ | 1807522841144328192 |
---|---|
author | Babuska, Ivo |
author2 | Sawlan, Zaid Scavino, Marco Szabo, Barna Tempone, Raul |
author2_role | author author author author |
author_facet | Babuska, Ivo Sawlan, Zaid Scavino, Marco Szabo, Barna Tempone, Raul |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 566cddace5619cc9a7a61f1309b50629 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/10534/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/10534/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/10534/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/10534/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/10534/1/ddt_01-1%281%29.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Babuska Ivo, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística. Sawlan Zaid, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística. Scavino Marco, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística. Szabo Barna, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística. Tempone Raul, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística. |
dc.creator.none.fl_str_mv | Babuska, Ivo Sawlan, Zaid Scavino, Marco Szabo, Barna Tempone, Raul |
dc.date.accessioned.none.fl_str_mv | 2017-11-22T15:05:13Z |
dc.date.available.none.fl_str_mv | 2017-11-22T15:05:13Z |
dc.date.issued.none.fl_str_mv | 2016 |
dc.description.abstract.none.fl_txt_mv | Este trabajo estaba basado en el artículo Bayesian inference and model comparison for metallic fatigue data, con I. Babuska, Z. Sawlan, B. Szabo y R. Tempone, publicado en https://arxiv.org/abs/1512.01779. En este trabajo exponemos un tratamiento estadístico de datos extraídos de un conjunto de registros de experimentos de fatiga que se realizaron en las aleaciones de aluminio 75S-T6. Nuestro objetivo principal es predecir la vida de fatiga de materiales, proporcionando un enfoque sistemático para la calibración y clasificación de los modelos propuestos con referencia a los datos de fatiga. A tal efecto, consideramos varios modelos estadísticos con límite de fatiga y con límite de fatiga aleatorio adecuados para el tratamiento de datos censurados a la derecha. En primer lugar, ajustamos los modelos a los datos por el método de máxima verosimi- litud y estimamos las cuantas de la distribución de vida de las aleaciones. La robustez de dichas estimaciones es evaluada por medio de intervalos de confanza obtenidos con una técnica de remuestreo estratificado respecto del ciclo de carga repetida. Una primera clasificación de los modelos adoptados es llevada a cabo a través de medidas clásicas de ajuste basadas en criterios de información. En segundo lugar, ampliamos el alcance de nuestro estudio considerando un enfoque Bayesiano. Dado el escenario a priori seleccionado por el usuario para incorporar el cono- cimiento disponible sobre los parámetros físicos de interés, se obtienen las distribuciones a posteriori aproximadas de dichos parámetros basadas en técnicas de simulación. Para clasificar los modelos Bayesianos y determinar que modelo sería preferible para un de- terminado escenario a priori, hemos aplicado tanto métodos basados en la estimación de la verosimilitud marginal como en modernos criterios de información de tipo predictivo, cuya aplicación requiere el uso de técnicas de validación cruzada. |
dc.format.extent.es.fl_str_mv | 32 p. |
dc.format.mimetype.none.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Babuska, I.,Sawlan, Z.,Scavino, M., y otros. Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos [en línea]. Montevideo : Udelar. FCEA-IESTA, 2016 |
dc.identifier.issn.none.fl_str_mv | 1688-6453 |
dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/20.500.12008/10534 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar. FCEA-IESTA |
dc.relation.ispartof.none.fl_str_mv | Serie DT (16 / 01); |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Datos de fatiga Predicción de vida de fatiga Modelos con límite de fatiga aleatorio Calibración y clasificación de modelos Bayesianos Precisión predictiva de modelos Bayesianos |
dc.title.none.fl_str_mv | Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos |
dc.type.es.fl_str_mv | Documento de trabajo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/workingPaper |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Este trabajo estaba basado en el artículo Bayesian inference and model comparison for metallic fatigue data, con I. Babuska, Z. Sawlan, B. Szabo y R. Tempone, publicado en https://arxiv.org/abs/1512.01779. En este trabajo exponemos un tratamiento estadístico de datos extraídos de un conjunto de registros de experimentos de fatiga que se realizaron en las aleaciones de aluminio 75S-T6. Nuestro objetivo principal es predecir la vida de fatiga de materiales, proporcionando un enfoque sistemático para la calibración y clasificación de los modelos propuestos con referencia a los datos de fatiga. A tal efecto, consideramos varios modelos estadísticos con límite de fatiga y con límite de fatiga aleatorio adecuados para el tratamiento de datos censurados a la derecha. En primer lugar, ajustamos los modelos a los datos por el método de máxima verosimi- litud y estimamos las cuantas de la distribución de vida de las aleaciones. La robustez de dichas estimaciones es evaluada por medio de intervalos de confanza obtenidos con una técnica de remuestreo estratificado respecto del ciclo de carga repetida. Una primera clasificación de los modelos adoptados es llevada a cabo a través de medidas clásicas de ajuste basadas en criterios de información. En segundo lugar, ampliamos el alcance de nuestro estudio considerando un enfoque Bayesiano. Dado el escenario a priori seleccionado por el usuario para incorporar el cono- cimiento disponible sobre los parámetros físicos de interés, se obtienen las distribuciones a posteriori aproximadas de dichos parámetros basadas en técnicas de simulación. Para clasificar los modelos Bayesianos y determinar que modelo sería preferible para un de- terminado escenario a priori, hemos aplicado tanto métodos basados en la estimación de la verosimilitud marginal como en modernos criterios de información de tipo predictivo, cuya aplicación requiere el uso de técnicas de validación cruzada. |
eu_rights_str_mv | openAccess |
format | workingPaper |
id | COLIBRI_83c40ce4657d81a2402927508aa2b7b7 |
identifier_str_mv | Babuska, I.,Sawlan, Z.,Scavino, M., y otros. Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos [en línea]. Montevideo : Udelar. FCEA-IESTA, 2016 1688-6453 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/10534 |
publishDate | 2016 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
spelling | Babuska Ivo, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.Sawlan Zaid, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.Scavino Marco, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.Szabo Barna, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.Tempone Raul, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.2017-11-22T15:05:13Z2017-11-22T15:05:13Z2016Babuska, I.,Sawlan, Z.,Scavino, M., y otros. Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos [en línea]. Montevideo : Udelar. FCEA-IESTA, 20161688-6453http://hdl.handle.net/20.500.12008/10534Este trabajo estaba basado en el artículo Bayesian inference and model comparison for metallic fatigue data, con I. Babuska, Z. Sawlan, B. Szabo y R. Tempone, publicado en https://arxiv.org/abs/1512.01779. En este trabajo exponemos un tratamiento estadístico de datos extraídos de un conjunto de registros de experimentos de fatiga que se realizaron en las aleaciones de aluminio 75S-T6. Nuestro objetivo principal es predecir la vida de fatiga de materiales, proporcionando un enfoque sistemático para la calibración y clasificación de los modelos propuestos con referencia a los datos de fatiga. A tal efecto, consideramos varios modelos estadísticos con límite de fatiga y con límite de fatiga aleatorio adecuados para el tratamiento de datos censurados a la derecha. En primer lugar, ajustamos los modelos a los datos por el método de máxima verosimi- litud y estimamos las cuantas de la distribución de vida de las aleaciones. La robustez de dichas estimaciones es evaluada por medio de intervalos de confanza obtenidos con una técnica de remuestreo estratificado respecto del ciclo de carga repetida. Una primera clasificación de los modelos adoptados es llevada a cabo a través de medidas clásicas de ajuste basadas en criterios de información. En segundo lugar, ampliamos el alcance de nuestro estudio considerando un enfoque Bayesiano. Dado el escenario a priori seleccionado por el usuario para incorporar el cono- cimiento disponible sobre los parámetros físicos de interés, se obtienen las distribuciones a posteriori aproximadas de dichos parámetros basadas en técnicas de simulación. Para clasificar los modelos Bayesianos y determinar que modelo sería preferible para un de- terminado escenario a priori, hemos aplicado tanto métodos basados en la estimación de la verosimilitud marginal como en modernos criterios de información de tipo predictivo, cuya aplicación requiere el uso de técnicas de validación cruzada.Submitted by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2017-11-22T15:05:13Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) ddt_01-1(1).pdf: 12383241 bytes, checksum: 566cddace5619cc9a7a61f1309b50629 (MD5)Made available in DSpace on 2017-11-22T15:05:13Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) ddt_01-1(1).pdf: 12383241 bytes, checksum: 566cddace5619cc9a7a61f1309b50629 (MD5) Previous issue date: 201632 p.application/pdfesspaUdelar. FCEA-IESTASerie DT (16 / 01);Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Datos de fatigaPredicción de vida de fatigaModelos con límite de fatiga aleatorioCalibración y clasificación de modelos BayesianosPrecisión predictiva de modelos BayesianosInferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicosDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBabuska, IvoSawlan, ZaidScavino, MarcoSzabo, BarnaTempone, RaulLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/10534/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/10534/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/10534/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/10534/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALddt_01-1(1).pdfddt_01-1(1).pdfapplication/pdf12383241http://localhost:8080/xmlui/bitstream/20.500.12008/10534/1/ddt_01-1%281%29.pdf566cddace5619cc9a7a61f1309b50629MD5120.500.12008/105342018-02-14 13:57:43.02oai:colibri.udelar.edu.uy:20.500.12008/10534VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:30:55.155272COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos Babuska, Ivo Datos de fatiga Predicción de vida de fatiga Modelos con límite de fatiga aleatorio Calibración y clasificación de modelos Bayesianos Precisión predictiva de modelos Bayesianos |
status_str | publishedVersion |
title | Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos |
title_full | Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos |
title_fullStr | Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos |
title_full_unstemmed | Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos |
title_short | Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos |
title_sort | Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos |
topic | Datos de fatiga Predicción de vida de fatiga Modelos con límite de fatiga aleatorio Calibración y clasificación de modelos Bayesianos Precisión predictiva de modelos Bayesianos |
url | http://hdl.handle.net/20.500.12008/10534 |