Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos

Babuska, Ivo - Sawlan, Zaid - Scavino, Marco - Szabo, Barna - Tempone, Raul

Resumen:

Este trabajo estaba basado en el artículo Bayesian inference and model comparison for metallic fatigue data, con I. Babuska, Z. Sawlan, B. Szabo y R. Tempone, publicado en https://arxiv.org/abs/1512.01779. En este trabajo exponemos un tratamiento estadístico de datos extraídos de un conjunto de registros de experimentos de fatiga que se realizaron en las aleaciones de aluminio 75S-T6. Nuestro objetivo principal es predecir la vida de fatiga de materiales, proporcionando un enfoque sistemático para la calibración y clasificación de los modelos propuestos con referencia a los datos de fatiga. A tal efecto, consideramos varios modelos estadísticos con límite de fatiga y con límite de fatiga aleatorio adecuados para el tratamiento de datos censurados a la derecha. En primer lugar, ajustamos los modelos a los datos por el método de máxima verosimi- litud y estimamos las cuantas de la distribución de vida de las aleaciones. La robustez de dichas estimaciones es evaluada por medio de intervalos de confanza obtenidos con una técnica de remuestreo estratificado respecto del ciclo de carga repetida. Una primera clasificación de los modelos adoptados es llevada a cabo a través de medidas clásicas de ajuste basadas en criterios de información. En segundo lugar, ampliamos el alcance de nuestro estudio considerando un enfoque Bayesiano. Dado el escenario a priori seleccionado por el usuario para incorporar el cono- cimiento disponible sobre los parámetros físicos de interés, se obtienen las distribuciones a posteriori aproximadas de dichos parámetros basadas en técnicas de simulación. Para clasificar los modelos Bayesianos y determinar que modelo sería preferible para un de- terminado escenario a priori, hemos aplicado tanto métodos basados en la estimación de la verosimilitud marginal como en modernos criterios de información de tipo predictivo, cuya aplicación requiere el uso de técnicas de validación cruzada.


Detalles Bibliográficos
2016
Datos de fatiga
Predicción de vida de fatiga
Modelos con límite de fatiga aleatorio
Calibración y clasificación de modelos Bayesianos
Precisión predictiva de modelos Bayesianos
Español
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/10534
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807522841144328192
author Babuska, Ivo
author2 Sawlan, Zaid
Scavino, Marco
Szabo, Barna
Tempone, Raul
author2_role author
author
author
author
author_facet Babuska, Ivo
Sawlan, Zaid
Scavino, Marco
Szabo, Barna
Tempone, Raul
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
566cddace5619cc9a7a61f1309b50629
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/10534/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/10534/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/10534/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/10534/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/10534/1/ddt_01-1%281%29.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Babuska Ivo, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.
Sawlan Zaid, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.
Scavino Marco, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.
Szabo Barna, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.
Tempone Raul, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.
dc.creator.none.fl_str_mv Babuska, Ivo
Sawlan, Zaid
Scavino, Marco
Szabo, Barna
Tempone, Raul
dc.date.accessioned.none.fl_str_mv 2017-11-22T15:05:13Z
dc.date.available.none.fl_str_mv 2017-11-22T15:05:13Z
dc.date.issued.none.fl_str_mv 2016
dc.description.abstract.none.fl_txt_mv Este trabajo estaba basado en el artículo Bayesian inference and model comparison for metallic fatigue data, con I. Babuska, Z. Sawlan, B. Szabo y R. Tempone, publicado en https://arxiv.org/abs/1512.01779. En este trabajo exponemos un tratamiento estadístico de datos extraídos de un conjunto de registros de experimentos de fatiga que se realizaron en las aleaciones de aluminio 75S-T6. Nuestro objetivo principal es predecir la vida de fatiga de materiales, proporcionando un enfoque sistemático para la calibración y clasificación de los modelos propuestos con referencia a los datos de fatiga. A tal efecto, consideramos varios modelos estadísticos con límite de fatiga y con límite de fatiga aleatorio adecuados para el tratamiento de datos censurados a la derecha. En primer lugar, ajustamos los modelos a los datos por el método de máxima verosimi- litud y estimamos las cuantas de la distribución de vida de las aleaciones. La robustez de dichas estimaciones es evaluada por medio de intervalos de confanza obtenidos con una técnica de remuestreo estratificado respecto del ciclo de carga repetida. Una primera clasificación de los modelos adoptados es llevada a cabo a través de medidas clásicas de ajuste basadas en criterios de información. En segundo lugar, ampliamos el alcance de nuestro estudio considerando un enfoque Bayesiano. Dado el escenario a priori seleccionado por el usuario para incorporar el cono- cimiento disponible sobre los parámetros físicos de interés, se obtienen las distribuciones a posteriori aproximadas de dichos parámetros basadas en técnicas de simulación. Para clasificar los modelos Bayesianos y determinar que modelo sería preferible para un de- terminado escenario a priori, hemos aplicado tanto métodos basados en la estimación de la verosimilitud marginal como en modernos criterios de información de tipo predictivo, cuya aplicación requiere el uso de técnicas de validación cruzada.
dc.format.extent.es.fl_str_mv 32 p.
dc.format.mimetype.none.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Babuska, I.,Sawlan, Z.,Scavino, M., y otros. Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos [en línea]. Montevideo : Udelar. FCEA-IESTA, 2016
dc.identifier.issn.none.fl_str_mv 1688-6453
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/10534
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar. FCEA-IESTA
dc.relation.ispartof.none.fl_str_mv Serie DT (16 / 01);
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Datos de fatiga
Predicción de vida de fatiga
Modelos con límite de fatiga aleatorio
Calibración y clasificación de modelos Bayesianos
Precisión predictiva de modelos Bayesianos
dc.title.none.fl_str_mv Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos
dc.type.es.fl_str_mv Documento de trabajo
dc.type.none.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Este trabajo estaba basado en el artículo Bayesian inference and model comparison for metallic fatigue data, con I. Babuska, Z. Sawlan, B. Szabo y R. Tempone, publicado en https://arxiv.org/abs/1512.01779. En este trabajo exponemos un tratamiento estadístico de datos extraídos de un conjunto de registros de experimentos de fatiga que se realizaron en las aleaciones de aluminio 75S-T6. Nuestro objetivo principal es predecir la vida de fatiga de materiales, proporcionando un enfoque sistemático para la calibración y clasificación de los modelos propuestos con referencia a los datos de fatiga. A tal efecto, consideramos varios modelos estadísticos con límite de fatiga y con límite de fatiga aleatorio adecuados para el tratamiento de datos censurados a la derecha. En primer lugar, ajustamos los modelos a los datos por el método de máxima verosimi- litud y estimamos las cuantas de la distribución de vida de las aleaciones. La robustez de dichas estimaciones es evaluada por medio de intervalos de confanza obtenidos con una técnica de remuestreo estratificado respecto del ciclo de carga repetida. Una primera clasificación de los modelos adoptados es llevada a cabo a través de medidas clásicas de ajuste basadas en criterios de información. En segundo lugar, ampliamos el alcance de nuestro estudio considerando un enfoque Bayesiano. Dado el escenario a priori seleccionado por el usuario para incorporar el cono- cimiento disponible sobre los parámetros físicos de interés, se obtienen las distribuciones a posteriori aproximadas de dichos parámetros basadas en técnicas de simulación. Para clasificar los modelos Bayesianos y determinar que modelo sería preferible para un de- terminado escenario a priori, hemos aplicado tanto métodos basados en la estimación de la verosimilitud marginal como en modernos criterios de información de tipo predictivo, cuya aplicación requiere el uso de técnicas de validación cruzada.
eu_rights_str_mv openAccess
format workingPaper
id COLIBRI_83c40ce4657d81a2402927508aa2b7b7
identifier_str_mv Babuska, I.,Sawlan, Z.,Scavino, M., y otros. Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos [en línea]. Montevideo : Udelar. FCEA-IESTA, 2016
1688-6453
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/10534
publishDate 2016
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling Babuska Ivo, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.Sawlan Zaid, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.Scavino Marco, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.Szabo Barna, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.Tempone Raul, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y de Administración. Instituto de Estadística.2017-11-22T15:05:13Z2017-11-22T15:05:13Z2016Babuska, I.,Sawlan, Z.,Scavino, M., y otros. Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos [en línea]. Montevideo : Udelar. FCEA-IESTA, 20161688-6453http://hdl.handle.net/20.500.12008/10534Este trabajo estaba basado en el artículo Bayesian inference and model comparison for metallic fatigue data, con I. Babuska, Z. Sawlan, B. Szabo y R. Tempone, publicado en https://arxiv.org/abs/1512.01779. En este trabajo exponemos un tratamiento estadístico de datos extraídos de un conjunto de registros de experimentos de fatiga que se realizaron en las aleaciones de aluminio 75S-T6. Nuestro objetivo principal es predecir la vida de fatiga de materiales, proporcionando un enfoque sistemático para la calibración y clasificación de los modelos propuestos con referencia a los datos de fatiga. A tal efecto, consideramos varios modelos estadísticos con límite de fatiga y con límite de fatiga aleatorio adecuados para el tratamiento de datos censurados a la derecha. En primer lugar, ajustamos los modelos a los datos por el método de máxima verosimi- litud y estimamos las cuantas de la distribución de vida de las aleaciones. La robustez de dichas estimaciones es evaluada por medio de intervalos de confanza obtenidos con una técnica de remuestreo estratificado respecto del ciclo de carga repetida. Una primera clasificación de los modelos adoptados es llevada a cabo a través de medidas clásicas de ajuste basadas en criterios de información. En segundo lugar, ampliamos el alcance de nuestro estudio considerando un enfoque Bayesiano. Dado el escenario a priori seleccionado por el usuario para incorporar el cono- cimiento disponible sobre los parámetros físicos de interés, se obtienen las distribuciones a posteriori aproximadas de dichos parámetros basadas en técnicas de simulación. Para clasificar los modelos Bayesianos y determinar que modelo sería preferible para un de- terminado escenario a priori, hemos aplicado tanto métodos basados en la estimación de la verosimilitud marginal como en modernos criterios de información de tipo predictivo, cuya aplicación requiere el uso de técnicas de validación cruzada.Submitted by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2017-11-22T15:05:13Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) ddt_01-1(1).pdf: 12383241 bytes, checksum: 566cddace5619cc9a7a61f1309b50629 (MD5)Made available in DSpace on 2017-11-22T15:05:13Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) ddt_01-1(1).pdf: 12383241 bytes, checksum: 566cddace5619cc9a7a61f1309b50629 (MD5) Previous issue date: 201632 p.application/pdfesspaUdelar. FCEA-IESTASerie DT (16 / 01);Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Datos de fatigaPredicción de vida de fatigaModelos con límite de fatiga aleatorioCalibración y clasificación de modelos BayesianosPrecisión predictiva de modelos BayesianosInferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicosDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBabuska, IvoSawlan, ZaidScavino, MarcoSzabo, BarnaTempone, RaulLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/10534/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/10534/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/10534/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/10534/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALddt_01-1(1).pdfddt_01-1(1).pdfapplication/pdf12383241http://localhost:8080/xmlui/bitstream/20.500.12008/10534/1/ddt_01-1%281%29.pdf566cddace5619cc9a7a61f1309b50629MD5120.500.12008/105342018-02-14 13:57:43.02oai:colibri.udelar.edu.uy:20.500.12008/10534VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:30:55.155272COLIBRI - Universidad de la Repúblicafalse
spellingShingle Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos
Babuska, Ivo
Datos de fatiga
Predicción de vida de fatiga
Modelos con límite de fatiga aleatorio
Calibración y clasificación de modelos Bayesianos
Precisión predictiva de modelos Bayesianos
status_str publishedVersion
title Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos
title_full Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos
title_fullStr Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos
title_full_unstemmed Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos
title_short Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos
title_sort Inferencia Bayesiana para el análisis estadístico de datos de fatiga de materiales metálicos
topic Datos de fatiga
Predicción de vida de fatiga
Modelos con límite de fatiga aleatorio
Calibración y clasificación de modelos Bayesianos
Precisión predictiva de modelos Bayesianos
url http://hdl.handle.net/20.500.12008/10534