Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages.

Gómez, Álvaro

Supervisor(es): Randall, Gregory - Grompone von Gioi, Rafael - Facciolo, Gabriele

Resumen:

Satellite imagery is quickly gaining in importance, with Earth observation satellites producing daily images from all the points of the globe, both commercially and freely available. In this thesis we concentrate on surface reconstruction from visible light satellite images through stereo-vision. Given two images of a scene from different known viewpoints, the objective of stereo is to estimate the most likely 3D shape or depth that explains those images. When more than two images are available, multi-view stereo (MVS) can be applied working by pairs and integrating the reconstructions (pair-wise MVS) or deriving a reconstruction from all the images at a time (true MVS). In the case of satellite images, MVS has traditionally been performed with pair-wise approaches where the multiple views are treated by pairs doing traditional two-view stereo and then aggregating the digital surface models (DSM) from the pair-wise reconstructions to get the final result. Several well established commercial and open-source solutions organize their working pipelines in this way. This solutions mostly rely on classic stereo algorithms while deep learning (DL) alternatives are slowly being adapted to work in the pipelines. But the DL based approaches have not still clearly outperformed the traditional pipelines and there is room for much more work in this yet open area. A crucial issue that complicates the advance in this field is the scarce public datasets with well curated ground-truth. In this thesis a set of methods from different approaches of pair-wise and true MVS were evaluated and compared. For the comparison, classic and deep learning methods were adapted to work with satellite images and to correctly interface with S2P, a modular satellite stereo pipeline. The results obtained with deep learning methods showed the potential of using this kind of algorithms on satellite images as a step in a classic pipeline or as an end-to-end MVS solution. Considering pair-wise MVS, besides the stereo matching, two other steps are crucial to achieve a good reconstruction: (a) the selection of the most appropriate pairs, and (b) the fusion of the DSMs reconstructed from the pairs. For pair selection, a novel strategy based on the simulation of satellite images was devised and can order the pairs in a more consistent way than commonly used heuristics. For the simulation of images, a tool that can generate views from an artificial 3D scene was developed. Regarding the fusion of DSMs, an iterative scheme based on the bilateral filtering was conceived showing to be a robust and performant method. Improvements in other stages of the baseline stereo pipeline and the processing and analysis of point clouds were also part of the topics addressed during the thesis.


Los satélites que toman imágenes de la Tierra son cada vez más numerosos, produciendo imágenes diarias de todos los puntos del globo, tanto gratuitas como de pago. En esta tesis nos concentramos en la reconstrucción de superficies a partir de imágenes de satélite de luz visible a través de estereovisión. Dadas dos imágenes de una escena desde diferentes puntos de vista conocidos, el objetivo del estéreo es estimar la forma o profundidad 3D más probable que explica esas imágenes. Cuando hay más de dos imágenes disponibles, se puede aplicar el estéreo multivista (MVS) trabajando por pares e integrando las reconstrucciones (MVS por pares)o derivando una reconstrucción de todas las imágenes a la vez (MVS “real”). En el caso de las imágenes de satélite, el MVS se ha realizado tradicionalmente con enfoques por pares, en los que las múltiples vistas se tratan por pares realizando estéreo tradicional de dos vistas y luego fusionando los modelos digitales de superficie (DSM) de las reconstrucciones por pares para obtener el resultado final.Varias soluciones comerciales y de código abierto bien establecidas organizan sus pipelines de trabajo de este modo. Estas soluciones se basan principalmente en algoritmos de estéreo clásicos, mientras que las alternativas de aprendizaje profundo(AP) se están adaptando poco a poco para funcionar en los pipelines. Pero los resultados de los métodos basados en AP no han superado claramente a los de los pipelines tradicionales y queda mucho por hacer en este campo aún abierto. Una cuestión crucial que complica el avance en este campo es la escasez de conjuntos de datos públicos con altura conocida. En la tesis se evaluaron y compararon un conjunto de métodos de diferentes enfoques de MVS por pares y real. Para la comparación, se adaptaron métodos clásicos y de aprendizaje profundo para trabajar con imágenes de satélite y para interactuar correctamente con S2P, un pipeline modular de estereo satelital. Los resultados obtenidos con los métodos de aprendizaje profundo mostraron el potencial del uso de este tipo de algoritmos en imágenes de satélite como un paso en un pipeline estéreo clásico o como una solución MVS de extremo a extremo. Si se considera el MVS por pares, además del matching estéreo, hay otros dos pasos cruciales para lograr una buena reconstrucción: (a) la selección de los pares más apropiados, y (b) la fusión de los DSMs reconstruidos a partir de los pares. Para la selección de pares, se concibió una estrategia novedosa basada en la simulación de imágenes de satélite que puede ordenar los pares de forma más consistente que las heurísticas utilizadas habitualmente. Para la simulación de imágenes, se desarrolló una herramienta que puede generar vistas a partir de una escena 3D artificial. En cuanto a la fusión de DSMs, se desarrolló un esquema iterativo basado en el filtrado bilateral que demostró ser un método robusto. Las mejoras en otras etapas del pipeline estéreo satelital y el procesamiento de nubes de puntos también formaron parte de los temas abordados durante la tesis.


Detalles Bibliográficos
2023
Satellite image
Satellite stereo pipeline
Multiview stereo
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/36993
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523179619418112
author Gómez, Álvaro
author_facet Gómez, Álvaro
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
2fb7411f266f0e29bca4077a74807a03
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/36993/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/36993/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/36993/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/36993/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/36993/1/G%C3%B323.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Gómez Álvaro, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Randall, Gregory
Grompone von Gioi, Rafael
Facciolo, Gabriele
dc.creator.none.fl_str_mv Gómez, Álvaro
dc.date.accessioned.none.fl_str_mv 2023-05-08T16:06:41Z
dc.date.available.none.fl_str_mv 2023-05-08T16:06:41Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Satellite imagery is quickly gaining in importance, with Earth observation satellites producing daily images from all the points of the globe, both commercially and freely available. In this thesis we concentrate on surface reconstruction from visible light satellite images through stereo-vision. Given two images of a scene from different known viewpoints, the objective of stereo is to estimate the most likely 3D shape or depth that explains those images. When more than two images are available, multi-view stereo (MVS) can be applied working by pairs and integrating the reconstructions (pair-wise MVS) or deriving a reconstruction from all the images at a time (true MVS). In the case of satellite images, MVS has traditionally been performed with pair-wise approaches where the multiple views are treated by pairs doing traditional two-view stereo and then aggregating the digital surface models (DSM) from the pair-wise reconstructions to get the final result. Several well established commercial and open-source solutions organize their working pipelines in this way. This solutions mostly rely on classic stereo algorithms while deep learning (DL) alternatives are slowly being adapted to work in the pipelines. But the DL based approaches have not still clearly outperformed the traditional pipelines and there is room for much more work in this yet open area. A crucial issue that complicates the advance in this field is the scarce public datasets with well curated ground-truth. In this thesis a set of methods from different approaches of pair-wise and true MVS were evaluated and compared. For the comparison, classic and deep learning methods were adapted to work with satellite images and to correctly interface with S2P, a modular satellite stereo pipeline. The results obtained with deep learning methods showed the potential of using this kind of algorithms on satellite images as a step in a classic pipeline or as an end-to-end MVS solution. Considering pair-wise MVS, besides the stereo matching, two other steps are crucial to achieve a good reconstruction: (a) the selection of the most appropriate pairs, and (b) the fusion of the DSMs reconstructed from the pairs. For pair selection, a novel strategy based on the simulation of satellite images was devised and can order the pairs in a more consistent way than commonly used heuristics. For the simulation of images, a tool that can generate views from an artificial 3D scene was developed. Regarding the fusion of DSMs, an iterative scheme based on the bilateral filtering was conceived showing to be a robust and performant method. Improvements in other stages of the baseline stereo pipeline and the processing and analysis of point clouds were also part of the topics addressed during the thesis.
Los satélites que toman imágenes de la Tierra son cada vez más numerosos, produciendo imágenes diarias de todos los puntos del globo, tanto gratuitas como de pago. En esta tesis nos concentramos en la reconstrucción de superficies a partir de imágenes de satélite de luz visible a través de estereovisión. Dadas dos imágenes de una escena desde diferentes puntos de vista conocidos, el objetivo del estéreo es estimar la forma o profundidad 3D más probable que explica esas imágenes. Cuando hay más de dos imágenes disponibles, se puede aplicar el estéreo multivista (MVS) trabajando por pares e integrando las reconstrucciones (MVS por pares)o derivando una reconstrucción de todas las imágenes a la vez (MVS “real”). En el caso de las imágenes de satélite, el MVS se ha realizado tradicionalmente con enfoques por pares, en los que las múltiples vistas se tratan por pares realizando estéreo tradicional de dos vistas y luego fusionando los modelos digitales de superficie (DSM) de las reconstrucciones por pares para obtener el resultado final.Varias soluciones comerciales y de código abierto bien establecidas organizan sus pipelines de trabajo de este modo. Estas soluciones se basan principalmente en algoritmos de estéreo clásicos, mientras que las alternativas de aprendizaje profundo(AP) se están adaptando poco a poco para funcionar en los pipelines. Pero los resultados de los métodos basados en AP no han superado claramente a los de los pipelines tradicionales y queda mucho por hacer en este campo aún abierto. Una cuestión crucial que complica el avance en este campo es la escasez de conjuntos de datos públicos con altura conocida. En la tesis se evaluaron y compararon un conjunto de métodos de diferentes enfoques de MVS por pares y real. Para la comparación, se adaptaron métodos clásicos y de aprendizaje profundo para trabajar con imágenes de satélite y para interactuar correctamente con S2P, un pipeline modular de estereo satelital. Los resultados obtenidos con los métodos de aprendizaje profundo mostraron el potencial del uso de este tipo de algoritmos en imágenes de satélite como un paso en un pipeline estéreo clásico o como una solución MVS de extremo a extremo. Si se considera el MVS por pares, además del matching estéreo, hay otros dos pasos cruciales para lograr una buena reconstrucción: (a) la selección de los pares más apropiados, y (b) la fusión de los DSMs reconstruidos a partir de los pares. Para la selección de pares, se concibió una estrategia novedosa basada en la simulación de imágenes de satélite que puede ordenar los pares de forma más consistente que las heurísticas utilizadas habitualmente. Para la simulación de imágenes, se desarrolló una herramienta que puede generar vistas a partir de una escena 3D artificial. En cuanto a la fusión de DSMs, se desarrolló un esquema iterativo basado en el filtrado bilateral que demostró ser un método robusto. Las mejoras en otras etapas del pipeline estéreo satelital y el procesamiento de nubes de puntos también formaron parte de los temas abordados durante la tesis.
dc.format.extent.es.fl_str_mv 147 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Gómez, A. Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages [en línea]. Tesis de doctorado. Montevideo : Udelar. FI. IIE, 2023.
dc.identifier.issn.none.fl_str_mv 1688-2784
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/36993
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar. FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Satellite image
Satellite stereo pipeline
Multiview stereo
dc.title.none.fl_str_mv Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages.
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Satellite imagery is quickly gaining in importance, with Earth observation satellites producing daily images from all the points of the globe, both commercially and freely available. In this thesis we concentrate on surface reconstruction from visible light satellite images through stereo-vision. Given two images of a scene from different known viewpoints, the objective of stereo is to estimate the most likely 3D shape or depth that explains those images. When more than two images are available, multi-view stereo (MVS) can be applied working by pairs and integrating the reconstructions (pair-wise MVS) or deriving a reconstruction from all the images at a time (true MVS). In the case of satellite images, MVS has traditionally been performed with pair-wise approaches where the multiple views are treated by pairs doing traditional two-view stereo and then aggregating the digital surface models (DSM) from the pair-wise reconstructions to get the final result. Several well established commercial and open-source solutions organize their working pipelines in this way. This solutions mostly rely on classic stereo algorithms while deep learning (DL) alternatives are slowly being adapted to work in the pipelines. But the DL based approaches have not still clearly outperformed the traditional pipelines and there is room for much more work in this yet open area. A crucial issue that complicates the advance in this field is the scarce public datasets with well curated ground-truth. In this thesis a set of methods from different approaches of pair-wise and true MVS were evaluated and compared. For the comparison, classic and deep learning methods were adapted to work with satellite images and to correctly interface with S2P, a modular satellite stereo pipeline. The results obtained with deep learning methods showed the potential of using this kind of algorithms on satellite images as a step in a classic pipeline or as an end-to-end MVS solution. Considering pair-wise MVS, besides the stereo matching, two other steps are crucial to achieve a good reconstruction: (a) the selection of the most appropriate pairs, and (b) the fusion of the DSMs reconstructed from the pairs. For pair selection, a novel strategy based on the simulation of satellite images was devised and can order the pairs in a more consistent way than commonly used heuristics. For the simulation of images, a tool that can generate views from an artificial 3D scene was developed. Regarding the fusion of DSMs, an iterative scheme based on the bilateral filtering was conceived showing to be a robust and performant method. Improvements in other stages of the baseline stereo pipeline and the processing and analysis of point clouds were also part of the topics addressed during the thesis.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_8210a70a83b9178ac4e565cd569e2b17
identifier_str_mv Gómez, A. Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages [en línea]. Tesis de doctorado. Montevideo : Udelar. FI. IIE, 2023.
1688-2784
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/36993
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Gómez Álvaro, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-05-08T16:06:41Z2023-05-08T16:06:41Z2023Gómez, A. Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages [en línea]. Tesis de doctorado. Montevideo : Udelar. FI. IIE, 2023.1688-2784https://hdl.handle.net/20.500.12008/36993Satellite imagery is quickly gaining in importance, with Earth observation satellites producing daily images from all the points of the globe, both commercially and freely available. In this thesis we concentrate on surface reconstruction from visible light satellite images through stereo-vision. Given two images of a scene from different known viewpoints, the objective of stereo is to estimate the most likely 3D shape or depth that explains those images. When more than two images are available, multi-view stereo (MVS) can be applied working by pairs and integrating the reconstructions (pair-wise MVS) or deriving a reconstruction from all the images at a time (true MVS). In the case of satellite images, MVS has traditionally been performed with pair-wise approaches where the multiple views are treated by pairs doing traditional two-view stereo and then aggregating the digital surface models (DSM) from the pair-wise reconstructions to get the final result. Several well established commercial and open-source solutions organize their working pipelines in this way. This solutions mostly rely on classic stereo algorithms while deep learning (DL) alternatives are slowly being adapted to work in the pipelines. But the DL based approaches have not still clearly outperformed the traditional pipelines and there is room for much more work in this yet open area. A crucial issue that complicates the advance in this field is the scarce public datasets with well curated ground-truth. In this thesis a set of methods from different approaches of pair-wise and true MVS were evaluated and compared. For the comparison, classic and deep learning methods were adapted to work with satellite images and to correctly interface with S2P, a modular satellite stereo pipeline. The results obtained with deep learning methods showed the potential of using this kind of algorithms on satellite images as a step in a classic pipeline or as an end-to-end MVS solution. Considering pair-wise MVS, besides the stereo matching, two other steps are crucial to achieve a good reconstruction: (a) the selection of the most appropriate pairs, and (b) the fusion of the DSMs reconstructed from the pairs. For pair selection, a novel strategy based on the simulation of satellite images was devised and can order the pairs in a more consistent way than commonly used heuristics. For the simulation of images, a tool that can generate views from an artificial 3D scene was developed. Regarding the fusion of DSMs, an iterative scheme based on the bilateral filtering was conceived showing to be a robust and performant method. Improvements in other stages of the baseline stereo pipeline and the processing and analysis of point clouds were also part of the topics addressed during the thesis.Los satélites que toman imágenes de la Tierra son cada vez más numerosos, produciendo imágenes diarias de todos los puntos del globo, tanto gratuitas como de pago. En esta tesis nos concentramos en la reconstrucción de superficies a partir de imágenes de satélite de luz visible a través de estereovisión. Dadas dos imágenes de una escena desde diferentes puntos de vista conocidos, el objetivo del estéreo es estimar la forma o profundidad 3D más probable que explica esas imágenes. Cuando hay más de dos imágenes disponibles, se puede aplicar el estéreo multivista (MVS) trabajando por pares e integrando las reconstrucciones (MVS por pares)o derivando una reconstrucción de todas las imágenes a la vez (MVS “real”). En el caso de las imágenes de satélite, el MVS se ha realizado tradicionalmente con enfoques por pares, en los que las múltiples vistas se tratan por pares realizando estéreo tradicional de dos vistas y luego fusionando los modelos digitales de superficie (DSM) de las reconstrucciones por pares para obtener el resultado final.Varias soluciones comerciales y de código abierto bien establecidas organizan sus pipelines de trabajo de este modo. Estas soluciones se basan principalmente en algoritmos de estéreo clásicos, mientras que las alternativas de aprendizaje profundo(AP) se están adaptando poco a poco para funcionar en los pipelines. Pero los resultados de los métodos basados en AP no han superado claramente a los de los pipelines tradicionales y queda mucho por hacer en este campo aún abierto. Una cuestión crucial que complica el avance en este campo es la escasez de conjuntos de datos públicos con altura conocida. En la tesis se evaluaron y compararon un conjunto de métodos de diferentes enfoques de MVS por pares y real. Para la comparación, se adaptaron métodos clásicos y de aprendizaje profundo para trabajar con imágenes de satélite y para interactuar correctamente con S2P, un pipeline modular de estereo satelital. Los resultados obtenidos con los métodos de aprendizaje profundo mostraron el potencial del uso de este tipo de algoritmos en imágenes de satélite como un paso en un pipeline estéreo clásico o como una solución MVS de extremo a extremo. Si se considera el MVS por pares, además del matching estéreo, hay otros dos pasos cruciales para lograr una buena reconstrucción: (a) la selección de los pares más apropiados, y (b) la fusión de los DSMs reconstruidos a partir de los pares. Para la selección de pares, se concibió una estrategia novedosa basada en la simulación de imágenes de satélite que puede ordenar los pares de forma más consistente que las heurísticas utilizadas habitualmente. Para la simulación de imágenes, se desarrolló una herramienta que puede generar vistas a partir de una escena 3D artificial. En cuanto a la fusión de DSMs, se desarrolló un esquema iterativo basado en el filtrado bilateral que demostró ser un método robusto. Las mejoras en otras etapas del pipeline estéreo satelital y el procesamiento de nubes de puntos también formaron parte de los temas abordados durante la tesis.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-05-05T16:36:09Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Gó23.pdf: 91291257 bytes, checksum: 2fb7411f266f0e29bca4077a74807a03 (MD5)Approved for entry into archive by Berón Cecilia (cberon@fing.edu.uy) on 2023-05-05T17:53:13Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Gó23.pdf: 91291257 bytes, checksum: 2fb7411f266f0e29bca4077a74807a03 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-05-08T16:06:41Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Gó23.pdf: 91291257 bytes, checksum: 2fb7411f266f0e29bca4077a74807a03 (MD5) Previous issue date: 2023147 p.application/pdfenengUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Satellite imageSatellite stereo pipelineMultiview stereoChallenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages.Tesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGómez, ÁlvaroRandall, GregoryGrompone von Gioi, RafaelFacciolo, GabrieleUniversidad de la República (Uruguay). Facultad de Ingeniería.Doctor en Ingeniería (Ingeniería Eléctrica)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/36993/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/36993/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/36993/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/36993/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALGó23.pdfGó23.pdfapplication/pdf91291257http://localhost:8080/xmlui/bitstream/20.500.12008/36993/1/G%C3%B323.pdf2fb7411f266f0e29bca4077a74807a03MD5120.500.12008/369932023-05-08 13:06:41.586oai:colibri.udelar.edu.uy:20.500.12008/36993VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:19.093203COLIBRI - Universidad de la Repúblicafalse
spellingShingle Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages.
Gómez, Álvaro
Satellite image
Satellite stereo pipeline
Multiview stereo
status_str acceptedVersion
title Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages.
title_full Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages.
title_fullStr Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages.
title_full_unstemmed Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages.
title_short Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages.
title_sort Challenges of multi-view satellite stereo reconstruction pipelines and some contributions on key stages.
topic Satellite image
Satellite stereo pipeline
Multiview stereo
url https://hdl.handle.net/20.500.12008/36993