Subpixel point spread function estimation from two photographs at different distances
Resumen:
In most digital cameras, and even in high-end digital single lens reflex cameras, the acquired images are sampled at rates below the Nyquist critical rate, causing aliasing effects. This work introduces an algorithm for the subpixel estimation of the point spread function (PSF) of a digital camera from aliased photographs. The numerical procedure simply uses two fronto-parallel photographs of any planar textured scene at different distances. The mathematical theory developed herein proves that the camera PSF can be derived from these two images, under reasonable conditions. Mathematical proofs supplemented by experimental evidence show the well-posedness of the problem and the convergence of the proposed algorithm to the camera in-focus PSF. An experimental comparison of the resulting PSF estimates shows that the proposed algorithm reaches the accuracy levels of the best nonblind state-of-the-art methods.
2012 | |
Procesamiento de Señales | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41148
https://doi.org/10.1137/110848335 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Blind subpixel point spread function estimation from scaled image pairs
Autor(es):: Delbracio, Mauricio
Fecha de publicación:: (2012) -
Non-parametric sub-pixel local point spread function estimation
Autor(es):: Almansa, Andrés
Fecha de publicación:: (2012) -
Análisis de un algoritmo de estimación subpixel de la point spread function
Autor(es):: Delbracio, Mauricio
Fecha de publicación:: (2009) -
An unsupervised point alignment detection algorithm
Autor(es):: Lezama, José
Fecha de publicación:: (2015) -
The non- parametric sub-pixel local point spread function estimation is a well posed problem
Autor(es):: Delbracio, Mauricio
Fecha de publicación:: (2012)