Subpixel point spread function estimation from two photographs at different distances

Almansa, Andrés - Musé, Pablo - Delbracio, Mauricio - Morel, Jean-Michel

Resumen:

In most digital cameras, and even in high-end digital single lens reflex cameras, the acquired images are sampled at rates below the Nyquist critical rate, causing aliasing effects. This work introduces an algorithm for the subpixel estimation of the point spread function (PSF) of a digital camera from aliased photographs. The numerical procedure simply uses two fronto-parallel photographs of any planar textured scene at different distances. The mathematical theory developed herein proves that the camera PSF can be derived from these two images, under reasonable conditions. Mathematical proofs supplemented by experimental evidence show the well-posedness of the problem and the convergence of the proposed algorithm to the camera in-focus PSF. An experimental comparison of the resulting PSF estimates shows that the proposed algorithm reaches the accuracy levels of the best nonblind state-of-the-art methods.


Detalles Bibliográficos
2012
Procesamiento de Señales
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/41148
https://doi.org/10.1137/110848335
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
Resumen:
Sumario:In most digital cameras, and even in high-end digital single lens reflex cameras, the acquired images are sampled at rates below the Nyquist critical rate, causing aliasing effects. This work introduces an algorithm for the subpixel estimation of the point spread function (PSF) of a digital camera from aliased photographs. The numerical procedure simply uses two fronto-parallel photographs of any planar textured scene at different distances. The mathematical theory developed herein proves that the camera PSF can be derived from these two images, under reasonable conditions. Mathematical proofs supplemented by experimental evidence show the well-posedness of the problem and the convergence of the proposed algorithm to the camera in-focus PSF. An experimental comparison of the resulting PSF estimates shows that the proposed algorithm reaches the accuracy levels of the best nonblind state-of-the-art methods.