Gorenstein Fano Generic Torus Orbit closures in G/P
Resumen:
Given a reductive group G and a parabolic subgroup P⊂G, with maximaltorus T, we consider (following Dabrowski's work) the closure X of a generic T-orbit in G/P, and determine in combinatorial termswhen the toric variety X is Q-Gorenstein Fano, extending in this way the classification of smooth Fano generic closures given by Voskresenski\uı and Klyachko. As an application, we apply the well known correspondence between Gorenstein Fano toric varieties and reflexive polytopes in order to exhibit which reflexive polytopes correspond to generic closures -- this list includes the reflexive root polytopes.
2023 | |
TORIC VARIETIES FLAG VARIETIES FANO VARIETIES ROOT SYSTEM |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/44885 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |