Single image non-uniform blur kernel estimation via adaptive basis decomposition.
Resumen:
Characterizing and removing motion blur caused by camera shake or object motion remains an important task for image restoration. In recent years, removal of motion blur in photographs has seen impressive progress in the hands of deep learning-based methods, trained to map directly from blurry to sharp images. Characterization of motion blur, on the other hand, has received less attention and progress in model-based methods for restoration lags behind that of data-driven end-to-end approaches. In this paper, we propose a general, non-parametric model for dense non-uniform motion blur estimation. Given a blurry image, we estimate a set of adaptive basis kernels as well as the mixing coefficients at pixel level, producing a per-pixel map of motion blur. This rich but efficient forward model of the degradation process allows the utilization of existing tools for solving inverse problems. We show that our method overcomes the limitations of existing non-uniform motion blur estimation and that it contributes to bridging the gap between model-based and data-driven approaches for deblurring real photographs.
2021 | |
Computer Vision and Pattern Recognition Artificial Intelligence Machine Learning |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/27061 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Sumario: | Characterizing and removing motion blur caused by camera shake or object motion remains an important task for image restoration. In recent years, removal of motion blur in photographs has seen impressive progress in the hands of deep learning-based methods, trained to map directly from blurry to sharp images. Characterization of motion blur, on the other hand, has received less attention and progress in model-based methods for restoration lags behind that of data-driven end-to-end approaches. In this paper, we propose a general, non-parametric model for dense non-uniform motion blur estimation. Given a blurry image, we estimate a set of adaptive basis kernels as well as the mixing coefficients at pixel level, producing a per-pixel map of motion blur. This rich but efficient forward model of the degradation process allows the utilization of existing tools for solving inverse problems. We show that our method overcomes the limitations of existing non-uniform motion blur estimation and that it contributes to bridging the gap between model-based and data-driven approaches for deblurring real photographs. |
---|