Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds
Resumen:
We study conservative partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds. We show that they are always accessible and deduce as a result that every conservative C1+ partially hyperbolic in a hyperbolic 3-manifold must be ergodic, giving an affirmative answer to a conjecture of Hertz-Hertz-Ures in the context of hyperbolic 3-manifolds. We also get some results for general partially hyperbolic diffeomorphisms homotopic to the identity and in some isotopy classes on Seifert manifolds.
2022 | |
Partial hyperbolicity 3-manifold topology Foliations Ergodicity Accessibility |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/38418 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Dynamical incoherence for a large class of partially hyperbolic diffeomorphisms
Autor(es):: Barthelmé, Thomas
Fecha de publicación:: (2020) -
Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, II: Branching foliations
Autor(es):: Barthelmé, Thomas
Fecha de publicación:: (2023) -
Anomalous partially hyperbolic diffeomorphisms II: stably ergodic examples
Autor(es):: Bonatti, Christian
Fecha de publicación:: (2016) -
Minimality of the action on the universal circle of uniform foliations
Autor(es):: Fenley, Sergio
Fecha de publicación:: (2021) -
Dynamical coherence in isotopy classes of fibered lifted partially hyperbolic diffeomorphisms
Autor(es):: Piñeyrúa Ramos, Luis Pedro
Fecha de publicación:: (2023)