Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina

Chaer, Ruben - Ramírez Paulino, Ignacio - Camacho, Vanina - Caporale, Ximena - Casaravilla, Gonzalo

Resumen:

In the continuous fight against Bellman's Curse of Dimensionality, this work presents the first steps towards learning the Optimal Operation Policy of the electricity generation system of Uruguay, Brazil, Paraguay and Argentina with the infrastructures projected for the year 2030. The Operation Policy under consideration involves 76 state variables: one associated to the surface temperature anomaly of the Pacific Ocean in the N34 area, and 75 related to the hydroelectric reservoirs. The proposed methodology includes the design and training of two alternate neural network architectures combined with modern techniques devised for variance reduction and exploration, which were key to the success achieved


Detalles Bibliográficos
2022
Proyecto ANII-FSE_1_2017_1_144926 - "Planificación de inversiones con energías variables, restricciones de red y gestión de demanda" (2018-2020) Fondo Sectorial de Energía ANII
Wind energy generation
Training
Sea surface
Renewable energy sources
Neural networks
Hydroelectric power generation
Reinforcement learning
Approximate Stochastic Dynamic Programming
Machine Learning
Optimal operation of hydrothermal systems
Inglés
Universidad de la República
COLIBRI
https://ieeexplore.ieee.org/document/10037786
https://hdl.handle.net/20.500.12008/36685
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522899831029760
author Chaer, Ruben
author2 Ramírez Paulino, Ignacio
Camacho, Vanina
Caporale, Ximena
Casaravilla, Gonzalo
author2_role author
author
author
author
author_facet Chaer, Ruben
Ramírez Paulino, Ignacio
Camacho, Vanina
Caporale, Ximena
Casaravilla, Gonzalo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
249132c0fcef3a0382301d036e25d78b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/36685/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/36685/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/36685/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/36685/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/36685/1/CRCCC22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Chaer Ruben, Universidad de la República (Uruguay). Facultad de Ingeniería.
Ramírez Paulino Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Camacho Vanina, Administración del Mercado Eléctrico
Caporale Ximena, Universidad de la República (Uruguay). Facultad de Ingeniería.
Casaravilla Gonzalo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.coverage.spatial.es.fl_str_mv Argentina
Brasil
Paraguay
Uruguay
dc.creator.none.fl_str_mv Chaer, Ruben
Ramírez Paulino, Ignacio
Camacho, Vanina
Caporale, Ximena
Casaravilla, Gonzalo
dc.date.accessioned.none.fl_str_mv 2023-04-12T11:45:43Z
dc.date.available.none.fl_str_mv 2023-04-12T11:45:43Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv In the continuous fight against Bellman's Curse of Dimensionality, this work presents the first steps towards learning the Optimal Operation Policy of the electricity generation system of Uruguay, Brazil, Paraguay and Argentina with the infrastructures projected for the year 2030. The Operation Policy under consideration involves 76 state variables: one associated to the surface temperature anomaly of the Pacific Ocean in the N34 area, and 75 related to the hydroelectric reservoirs. The proposed methodology includes the design and training of two alternate neural network architectures combined with modern techniques devised for variance reduction and exploration, which were key to the success achieved
dc.description.es.fl_txt_mv Presentado y publicado en 2022 IEEE PES Generation, Transmission and Distribution Conference and Exposition – Latin America (IEEE PES GTD Latin America), La Paz, Bolivia, 20-22 oct. 2022, pp. 1-6.
dc.description.sponsorship.none.fl_txt_mv Proyecto ANII-FSE_1_2017_1_144926 - "Planificación de inversiones con energías variables, restricciones de red y gestión de demanda" (2018-2020) Fondo Sectorial de Energía ANII
dc.format.extent.es.fl_str_mv 6 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Chaer, R., Ramírez Paulino, I., Camacho, V. y otros. Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina [Preprint]. Publicado en: 2022 IEEE PES Generation, Transmission and Distribution Conference and Exposition – Latin America (IEEE PES GTD Latin America), La Paz, Bolivia, 20-22 oct 2022, 6 p. DOI 10.1109/IEEEPESGTDLatinAmeri53482.2022.10037786
dc.identifier.uri.none.fl_str_mv https://ieeexplore.ieee.org/document/10037786
https://hdl.handle.net/20.500.12008/36685
dc.language.iso.none.fl_str_mv en
eng
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Wind energy generation
Training
Sea surface
Renewable energy sources
Neural networks
Hydroelectric power generation
Reinforcement learning
Approximate Stochastic Dynamic Programming
Machine Learning
Optimal operation of hydrothermal systems
dc.title.none.fl_str_mv Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Presentado y publicado en 2022 IEEE PES Generation, Transmission and Distribution Conference and Exposition – Latin America (IEEE PES GTD Latin America), La Paz, Bolivia, 20-22 oct. 2022, pp. 1-6.
eu_rights_str_mv openAccess
format preprint
id COLIBRI_7b506d11cc275d40bf45410f1596713b
identifier_str_mv Chaer, R., Ramírez Paulino, I., Camacho, V. y otros. Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina [Preprint]. Publicado en: 2022 IEEE PES Generation, Transmission and Distribution Conference and Exposition – Latin America (IEEE PES GTD Latin America), La Paz, Bolivia, 20-22 oct 2022, 6 p. DOI 10.1109/IEEEPESGTDLatinAmeri53482.2022.10037786
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/36685
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Chaer Ruben, Universidad de la República (Uruguay). Facultad de Ingeniería.Ramírez Paulino Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Camacho Vanina, Administración del Mercado EléctricoCaporale Ximena, Universidad de la República (Uruguay). Facultad de Ingeniería.Casaravilla Gonzalo, Universidad de la República (Uruguay). Facultad de Ingeniería.ArgentinaBrasilParaguayUruguay2023-04-12T11:45:43Z2023-04-12T11:45:43Z2022Chaer, R., Ramírez Paulino, I., Camacho, V. y otros. Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina [Preprint]. Publicado en: 2022 IEEE PES Generation, Transmission and Distribution Conference and Exposition – Latin America (IEEE PES GTD Latin America), La Paz, Bolivia, 20-22 oct 2022, 6 p. DOI 10.1109/IEEEPESGTDLatinAmeri53482.2022.10037786https://ieeexplore.ieee.org/document/10037786https://hdl.handle.net/20.500.12008/36685Presentado y publicado en 2022 IEEE PES Generation, Transmission and Distribution Conference and Exposition – Latin America (IEEE PES GTD Latin America), La Paz, Bolivia, 20-22 oct. 2022, pp. 1-6.In the continuous fight against Bellman's Curse of Dimensionality, this work presents the first steps towards learning the Optimal Operation Policy of the electricity generation system of Uruguay, Brazil, Paraguay and Argentina with the infrastructures projected for the year 2030. The Operation Policy under consideration involves 76 state variables: one associated to the surface temperature anomaly of the Pacific Ocean in the N34 area, and 75 related to the hydroelectric reservoirs. The proposed methodology includes the design and training of two alternate neural network architectures combined with modern techniques devised for variance reduction and exploration, which were key to the success achievedSubmitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-04-10T16:47:07Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CRCCC22.pdf: 245758 bytes, checksum: 249132c0fcef3a0382301d036e25d78b (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-04-11T18:05:14Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CRCCC22.pdf: 245758 bytes, checksum: 249132c0fcef3a0382301d036e25d78b (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-04-12T11:45:43Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CRCCC22.pdf: 245758 bytes, checksum: 249132c0fcef3a0382301d036e25d78b (MD5) Previous issue date: 2022Proyecto ANII-FSE_1_2017_1_144926 - "Planificación de inversiones con energías variables, restricciones de red y gestión de demanda" (2018-2020) Fondo Sectorial de Energía ANII6 p.application/pdfenengLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Wind energy generationTrainingSea surfaceRenewable energy sourcesNeural networksHydroelectric power generationReinforcement learningApproximate Stochastic Dynamic ProgrammingMachine LearningOptimal operation of hydrothermal systemsLearning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and ArgentinaPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaChaer, RubenRamírez Paulino, IgnacioCamacho, VaninaCaporale, XimenaCasaravilla, GonzaloPotenciaPotenciaProcesamiento de SeñalesProcesamiento de SeñalesEnergía EléctricaTratamiento de ImágenesEnergía EléctricaTratamiento de ImágenesLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/36685/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/36685/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/36685/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/36685/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALCRCCC22.pdfCRCCC22.pdfapplication/pdf245758http://localhost:8080/xmlui/bitstream/20.500.12008/36685/1/CRCCC22.pdf249132c0fcef3a0382301d036e25d78bMD5120.500.12008/366852024-07-24 17:25:46.823oai:colibri.udelar.edu.uy:20.500.12008/36685VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:19.667813COLIBRI - Universidad de la Repúblicafalse
spellingShingle Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina
Chaer, Ruben
Wind energy generation
Training
Sea surface
Renewable energy sources
Neural networks
Hydroelectric power generation
Reinforcement learning
Approximate Stochastic Dynamic Programming
Machine Learning
Optimal operation of hydrothermal systems
status_str submittedVersion
title Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina
title_full Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina
title_fullStr Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina
title_full_unstemmed Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina
title_short Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina
title_sort Learning the optimal joint operation of the energy systems of Uruguay, Brazil, Paraguay and Argentina
topic Wind energy generation
Training
Sea surface
Renewable energy sources
Neural networks
Hydroelectric power generation
Reinforcement learning
Approximate Stochastic Dynamic Programming
Machine Learning
Optimal operation of hydrothermal systems
url https://ieeexplore.ieee.org/document/10037786
https://hdl.handle.net/20.500.12008/36685