NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives

Mariño, Camilo - Cossio, Guillermo - Massaferro Saquieres, Pablo - Di Martino, Matías - Gómez, Alvaro - Fernández, Alicia

Resumen:

Due to its impact on household energy use and the adoption of renewable energies, the intelligent management of the power consumption of electric vehicles (EVs) is of great relevance. In the context of widespread clean energy adoption and growing environmental concerns, generating incentives through discounted rates for intelligent residential EV power consumption requires algorithms capable of measuring loads in a disaggregated manner. The deployment of smart meter networks offers the possibility of applying machine learning techniques to estimate EV residential consumption. This work presents an efficient algorithm for the Non Intrusive Load Monitoring (NILM) of EV consumption, which is an adaptation of a method previously proposed for high-powered water heaters. Its performance is compared with methods based on deep neural networks. Results from an actual power demand dataset are discussed, and a comparative analysis is carried out against billing rules based on time slots and historical power consumption data.


Detalles Bibliográficos
2023
Beca Maestría CAP Camilo Mariño
Proyecto bajo financiación convenio UTE
NILM
Electric vehicles
Load disaggregation
Deep learning
Renewable energy sources
Power demand
Machine learning algorithms
Neural networks
Water heating
Electric vehicles
Inglés
Universidad de la República
COLIBRI
https://ieee-isgt.org/
https://ieeexplore.ieee.org/document/10066441
https://hdl.handle.net/20.500.12008/36564
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522899708346368
author Mariño, Camilo
author2 Cossio, Guillermo
Massaferro Saquieres, Pablo
Di Martino, Matías
Gómez, Alvaro
Fernández, Alicia
author2_role author
author
author
author
author
author_facet Mariño, Camilo
Cossio, Guillermo
Massaferro Saquieres, Pablo
Di Martino, Matías
Gómez, Alvaro
Fernández, Alicia
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
d3d457fda7ccda058e90ffe3551b72b3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/36564/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/36564/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/36564/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/36564/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/36564/1/MCMDGF23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Mariño Camilo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Cossio Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Massaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Di Martino Matías, Duke University
Gómez Alvaro, Universidad de la República (Uruguay). Facultad de Ingeniería.
Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.coverage.spatial.es.fl_str_mv Uruguay
Costa Rica
dc.creator.none.fl_str_mv Mariño, Camilo
Cossio, Guillermo
Massaferro Saquieres, Pablo
Di Martino, Matías
Gómez, Alvaro
Fernández, Alicia
dc.date.accessioned.none.fl_str_mv 2023-03-29T11:59:23Z
dc.date.available.none.fl_str_mv 2023-03-29T11:59:23Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Due to its impact on household energy use and the adoption of renewable energies, the intelligent management of the power consumption of electric vehicles (EVs) is of great relevance. In the context of widespread clean energy adoption and growing environmental concerns, generating incentives through discounted rates for intelligent residential EV power consumption requires algorithms capable of measuring loads in a disaggregated manner. The deployment of smart meter networks offers the possibility of applying machine learning techniques to estimate EV residential consumption. This work presents an efficient algorithm for the Non Intrusive Load Monitoring (NILM) of EV consumption, which is an adaptation of a method previously proposed for high-powered water heaters. Its performance is compared with methods based on deep neural networks. Results from an actual power demand dataset are discussed, and a comparative analysis is carried out against billing rules based on time slots and historical power consumption data.
dc.description.sponsorship.none.fl_txt_mv Beca Maestría CAP Camilo Mariño
Proyecto bajo financiación convenio UTE
dc.format.extent.es.fl_str_mv 5 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Mariño, C, Cossio, G, Massaferro Saquieres, P. y otros. NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives [en línea]. EN: 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-19 jan 2023, pp 1-5. DOI: 10.1109/ISGT51731.2023.10066441
dc.identifier.doi.none.fl_str_mv 10.1109/ISGT51731.2023.10066441
dc.identifier.uri.none.fl_str_mv https://ieee-isgt.org/
https://ieeexplore.ieee.org/document/10066441
https://hdl.handle.net/20.500.12008/36564
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv IEEE
dc.relation.ispartof.es.fl_str_mv 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-19 jan, pp 1-5
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv NILM
Electric vehicles
Load disaggregation
Deep learning
Renewable energy sources
Power demand
Machine learning algorithms
Neural networks
Water heating
Electric vehicles
dc.title.none.fl_str_mv NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives
dc.type.es.fl_str_mv Ponencia
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Due to its impact on household energy use and the adoption of renewable energies, the intelligent management of the power consumption of electric vehicles (EVs) is of great relevance. In the context of widespread clean energy adoption and growing environmental concerns, generating incentives through discounted rates for intelligent residential EV power consumption requires algorithms capable of measuring loads in a disaggregated manner. The deployment of smart meter networks offers the possibility of applying machine learning techniques to estimate EV residential consumption. This work presents an efficient algorithm for the Non Intrusive Load Monitoring (NILM) of EV consumption, which is an adaptation of a method previously proposed for high-powered water heaters. Its performance is compared with methods based on deep neural networks. Results from an actual power demand dataset are discussed, and a comparative analysis is carried out against billing rules based on time slots and historical power consumption data.
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_79c82d7b95dd3dd5fd6bfaceec6a566f
identifier_str_mv Mariño, C, Cossio, G, Massaferro Saquieres, P. y otros. NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives [en línea]. EN: 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-19 jan 2023, pp 1-5. DOI: 10.1109/ISGT51731.2023.10066441
10.1109/ISGT51731.2023.10066441
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/36564
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Mariño Camilo, Universidad de la República (Uruguay). Facultad de Ingeniería.Cossio Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.Massaferro Saquieres Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Di Martino Matías, Duke UniversityGómez Alvaro, Universidad de la República (Uruguay). Facultad de Ingeniería.Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.UruguayCosta Rica2023-03-29T11:59:23Z2023-03-29T11:59:23Z2023Mariño, C, Cossio, G, Massaferro Saquieres, P. y otros. NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives [en línea]. EN: 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-19 jan 2023, pp 1-5. DOI: 10.1109/ISGT51731.2023.10066441https://ieee-isgt.org/https://ieeexplore.ieee.org/document/10066441https://hdl.handle.net/20.500.12008/3656410.1109/ISGT51731.2023.10066441Due to its impact on household energy use and the adoption of renewable energies, the intelligent management of the power consumption of electric vehicles (EVs) is of great relevance. In the context of widespread clean energy adoption and growing environmental concerns, generating incentives through discounted rates for intelligent residential EV power consumption requires algorithms capable of measuring loads in a disaggregated manner. The deployment of smart meter networks offers the possibility of applying machine learning techniques to estimate EV residential consumption. This work presents an efficient algorithm for the Non Intrusive Load Monitoring (NILM) of EV consumption, which is an adaptation of a method previously proposed for high-powered water heaters. Its performance is compared with methods based on deep neural networks. Results from an actual power demand dataset are discussed, and a comparative analysis is carried out against billing rules based on time slots and historical power consumption data.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-03-25T19:37:32Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MCMDGF23.pdf: 322754 bytes, checksum: d3d457fda7ccda058e90ffe3551b72b3 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-03-28T20:39:13Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MCMDGF23.pdf: 322754 bytes, checksum: d3d457fda7ccda058e90ffe3551b72b3 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-03-29T11:59:23Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MCMDGF23.pdf: 322754 bytes, checksum: d3d457fda7ccda058e90ffe3551b72b3 (MD5) Previous issue date: 2023Beca Maestría CAP Camilo MariñoProyecto bajo financiación convenio UTE5 p.application/pdfenengIEEE2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, USA, 16-19 jan, pp 1-5Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)NILMElectric vehiclesLoad disaggregationDeep learningRenewable energy sourcesPower demandMachine learning algorithmsNeural networksWater heatingElectric vehiclesNILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentivesPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMariño, CamiloCossio, GuillermoMassaferro Saquieres, PabloDi Martino, MatíasGómez, AlvaroFernández, AliciaProcesamiento de SeñalesTratamiento de ImágenesLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/36564/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/36564/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/36564/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/36564/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALMCMDGF23.pdfMCMDGF23.pdfapplication/pdf322754http://localhost:8080/xmlui/bitstream/20.500.12008/36564/1/MCMDGF23.pdfd3d457fda7ccda058e90ffe3551b72b3MD5120.500.12008/365642024-07-24 17:25:46.728oai:colibri.udelar.edu.uy:20.500.12008/36564VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:19.161468COLIBRI - Universidad de la Repúblicafalse
spellingShingle NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives
Mariño, Camilo
NILM
Electric vehicles
Load disaggregation
Deep learning
Renewable energy sources
Power demand
Machine learning algorithms
Neural networks
Water heating
Electric vehicles
status_str publishedVersion
title NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives
title_full NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives
title_fullStr NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives
title_full_unstemmed NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives
title_short NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives
title_sort NILMEV : Electric Vehicle disaggregation for residential customer energy efficiency incentives
topic NILM
Electric vehicles
Load disaggregation
Deep learning
Renewable energy sources
Power demand
Machine learning algorithms
Neural networks
Water heating
Electric vehicles
url https://ieee-isgt.org/
https://ieeexplore.ieee.org/document/10066441
https://hdl.handle.net/20.500.12008/36564