FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje
Resumen:
Las técnicas de aprendizaje federado tienen como objetivo entrenar y construir modelos de aprendizaje automático basados en conjuntos de datos distribuidos a través de múltiples dispositivos evitando la fuga de datos. La idea principal es realizar el entrenamiento en dispositivos remotos o centros de datos aislados sin transferir los datos a repositorios centralizados, mitigando así los riesgos para la privacidad. La analítica de datos en la educación, en particular la analítica del aprendizaje, es un escenario prometedor para aplicar este enfoque con el fin de hacer frente a las cuestiones legales y éticas relacionadas con el tratamiento de datos sensibles. En efecto, dada la naturaleza de los datos que se van a estudiar (datos personales, resultados educativos, datos relativos a menores), es esencial asegurarse de que la realización de estos estudios y la publicación de los resultados ofrezcan las garantías necesarias para proteger la privacidad de las personas implicadas y la protección de sus datos. Además, la aplicación de técnicas cuantitativas basadas en la explotación de datos sobre el uso de plataformas educativas, rendimiento de los alumnos, uso de dispositivos, etc., puede dar cuenta de problemas educativos como la determinación de perfiles de usuarios, trayectorias de aprendizaje personalizadas, o indicadores y alertas de abandono temprano, entre otros. Este trabajo presenta los resultados del proyecto de investigación "Uso de técnicas de Aprendizaje Federado para el análisis de datos sensibles: aplicación al caso de Analíticas de Aprendizaje" financiado por la ANII (FMV_3_2020_1_162910 ), y en particular la aplicación de técnicas de aprendizaje federado a dos problemas de learning analytics: la predicción del abandono escolar y la clasificación no supervisada de estudiantes. Los experimentos permiten concluir que las soluciones propuestas alcanzan resultados comparables desde el punto de vista del rendimiento con las versiones centralizadas sin centralizar los datos para el entrenamiento de los modelos.
2022 | |
Proyecto financiado parcialmente por ANII (Fondo María Viñas FMV_3_2020_1_162910) | |
Federated Learning Analíticas de aprendizaje |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/35984 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522945772290048 |
---|---|
author | Bermolen, Paola |
author2 | Capdehourat, Germán Etcheverry, Lorena Fachola, Christian Fariello, María Inés Tornaría, Agustín |
author2_role | author author author author author |
author_facet | Bermolen, Paola Capdehourat, Germán Etcheverry, Lorena Fachola, Christian Fariello, María Inés Tornaría, Agustín |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 5496fc0e5fd48f50fe829b9d18359908 1996b8461bc290aef6a27d78c67b6b52 d3e6979c31dea628906a3bbd430d2153 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/35984/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/35984/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/35984/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/35984/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/35984/1/BCEFFT22.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Bermolen Paola, Universidad de la República (Uruguay). Facultad de Ingeniería. Capdehourat Germán, Universidad de la República (Uruguay). Facultad de Ingeniería Etcheverry Lorena, Universidad de la República (Uruguay). Facultad de Ingeniería Fachola Christian, Universidad de la República (Uruguay). Facultad de Ingeniería Fariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería Tornaría Agustín, Universidad de la República (Uruguay). Facultad de Ingeniería |
dc.creator.none.fl_str_mv | Bermolen, Paola Capdehourat, Germán Etcheverry, Lorena Fachola, Christian Fariello, María Inés Tornaría, Agustín |
dc.date.accessioned.none.fl_str_mv | 2023-02-22T16:19:51Z |
dc.date.available.none.fl_str_mv | 2023-02-22T16:19:51Z |
dc.date.issued.none.fl_str_mv | 2022 |
dc.description.abstract.none.fl_txt_mv | Las técnicas de aprendizaje federado tienen como objetivo entrenar y construir modelos de aprendizaje automático basados en conjuntos de datos distribuidos a través de múltiples dispositivos evitando la fuga de datos. La idea principal es realizar el entrenamiento en dispositivos remotos o centros de datos aislados sin transferir los datos a repositorios centralizados, mitigando así los riesgos para la privacidad. La analítica de datos en la educación, en particular la analítica del aprendizaje, es un escenario prometedor para aplicar este enfoque con el fin de hacer frente a las cuestiones legales y éticas relacionadas con el tratamiento de datos sensibles. En efecto, dada la naturaleza de los datos que se van a estudiar (datos personales, resultados educativos, datos relativos a menores), es esencial asegurarse de que la realización de estos estudios y la publicación de los resultados ofrezcan las garantías necesarias para proteger la privacidad de las personas implicadas y la protección de sus datos. Además, la aplicación de técnicas cuantitativas basadas en la explotación de datos sobre el uso de plataformas educativas, rendimiento de los alumnos, uso de dispositivos, etc., puede dar cuenta de problemas educativos como la determinación de perfiles de usuarios, trayectorias de aprendizaje personalizadas, o indicadores y alertas de abandono temprano, entre otros. Este trabajo presenta los resultados del proyecto de investigación "Uso de técnicas de Aprendizaje Federado para el análisis de datos sensibles: aplicación al caso de Analíticas de Aprendizaje" financiado por la ANII (FMV_3_2020_1_162910 ), y en particular la aplicación de técnicas de aprendizaje federado a dos problemas de learning analytics: la predicción del abandono escolar y la clasificación no supervisada de estudiantes. Los experimentos permiten concluir que las soluciones propuestas alcanzan resultados comparables desde el punto de vista del rendimiento con las versiones centralizadas sin centralizar los datos para el entrenamiento de los modelos. |
dc.description.es.fl_txt_mv | Versión 1.0 |
dc.description.sponsorship.none.fl_txt_mv | Proyecto financiado parcialmente por ANII (Fondo María Viñas FMV_3_2020_1_162910) |
dc.format.extent.es.fl_str_mv | 36 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Bermolen, P., Capdehourat, G., Etcheverry, L. y otros. FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje [en línea]. Montevideo : Udelar. FI., 2022 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/35984 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar. FI. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Federated Learning Analíticas de aprendizaje |
dc.title.none.fl_str_mv | FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje |
dc.type.es.fl_str_mv | Reporte técnico |
dc.type.none.fl_str_mv | info:eu-repo/semantics/report |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Versión 1.0 |
eu_rights_str_mv | openAccess |
format | report |
id | COLIBRI_797de510363e0404d31c6085a478f758 |
identifier_str_mv | Bermolen, P., Capdehourat, G., Etcheverry, L. y otros. FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje [en línea]. Montevideo : Udelar. FI., 2022 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/35984 |
publishDate | 2022 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Bermolen Paola, Universidad de la República (Uruguay). Facultad de Ingeniería.Capdehourat Germán, Universidad de la República (Uruguay). Facultad de IngenieríaEtcheverry Lorena, Universidad de la República (Uruguay). Facultad de IngenieríaFachola Christian, Universidad de la República (Uruguay). Facultad de IngenieríaFariello María Inés, Universidad de la República (Uruguay). Facultad de IngenieríaTornaría Agustín, Universidad de la República (Uruguay). Facultad de Ingeniería2023-02-22T16:19:51Z2023-02-22T16:19:51Z2022Bermolen, P., Capdehourat, G., Etcheverry, L. y otros. FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje [en línea]. Montevideo : Udelar. FI., 2022https://hdl.handle.net/20.500.12008/35984Versión 1.0Las técnicas de aprendizaje federado tienen como objetivo entrenar y construir modelos de aprendizaje automático basados en conjuntos de datos distribuidos a través de múltiples dispositivos evitando la fuga de datos. La idea principal es realizar el entrenamiento en dispositivos remotos o centros de datos aislados sin transferir los datos a repositorios centralizados, mitigando así los riesgos para la privacidad. La analítica de datos en la educación, en particular la analítica del aprendizaje, es un escenario prometedor para aplicar este enfoque con el fin de hacer frente a las cuestiones legales y éticas relacionadas con el tratamiento de datos sensibles. En efecto, dada la naturaleza de los datos que se van a estudiar (datos personales, resultados educativos, datos relativos a menores), es esencial asegurarse de que la realización de estos estudios y la publicación de los resultados ofrezcan las garantías necesarias para proteger la privacidad de las personas implicadas y la protección de sus datos. Además, la aplicación de técnicas cuantitativas basadas en la explotación de datos sobre el uso de plataformas educativas, rendimiento de los alumnos, uso de dispositivos, etc., puede dar cuenta de problemas educativos como la determinación de perfiles de usuarios, trayectorias de aprendizaje personalizadas, o indicadores y alertas de abandono temprano, entre otros. Este trabajo presenta los resultados del proyecto de investigación "Uso de técnicas de Aprendizaje Federado para el análisis de datos sensibles: aplicación al caso de Analíticas de Aprendizaje" financiado por la ANII (FMV_3_2020_1_162910 ), y en particular la aplicación de técnicas de aprendizaje federado a dos problemas de learning analytics: la predicción del abandono escolar y la clasificación no supervisada de estudiantes. Los experimentos permiten concluir que las soluciones propuestas alcanzan resultados comparables desde el punto de vista del rendimiento con las versiones centralizadas sin centralizar los datos para el entrenamiento de los modelos.Submitted by Machado Jimena (jmachado@fing.edu.uy) on 2023-02-02T18:57:04Z No. of bitstreams: 2 license_rdf: 23749 bytes, checksum: 6a69abe32f6fabdffa4c61be8f8efebd (MD5) BCEFFT22.pdf: 1918384 bytes, checksum: d3e6979c31dea628906a3bbd430d2153 (MD5)Rejected by Machado Jimena (jmachado@fing.edu.uy), reason: on 2023-02-16T15:32:33Z (GMT)Submitted by Machado Jimena (jmachado@fing.edu.uy) on 2023-02-16T15:33:22Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) BCEFFT22.pdf: 1918384 bytes, checksum: d3e6979c31dea628906a3bbd430d2153 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-02-22T16:14:16Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) BCEFFT22.pdf: 1918384 bytes, checksum: d3e6979c31dea628906a3bbd430d2153 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-02-22T16:19:51Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) BCEFFT22.pdf: 1918384 bytes, checksum: d3e6979c31dea628906a3bbd430d2153 (MD5) Previous issue date: 2022Proyecto financiado parcialmente por ANII (Fondo María Viñas FMV_3_2020_1_162910)36 p.application/pdfesspaUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Federated LearningAnalíticas de aprendizajeFLEA: Aprendizaje Federado aplicado a Analíticas de AprendizajeReporte técnicoinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBermolen, PaolaCapdehourat, GermánEtcheverry, LorenaFachola, ChristianFariello, María InésTornaría, AgustínLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/35984/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/35984/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838777http://localhost:8080/xmlui/bitstream/20.500.12008/35984/3/license_text5496fc0e5fd48f50fe829b9d18359908MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/35984/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALBCEFFT22.pdfBCEFFT22.pdfapplication/pdf1918384http://localhost:8080/xmlui/bitstream/20.500.12008/35984/1/BCEFFT22.pdfd3e6979c31dea628906a3bbd430d2153MD5120.500.12008/359842023-02-22 13:19:51.878oai:colibri.udelar.edu.uy:20.500.12008/35984VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:34:03.452134COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje Bermolen, Paola Federated Learning Analíticas de aprendizaje |
status_str | publishedVersion |
title | FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje |
title_full | FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje |
title_fullStr | FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje |
title_full_unstemmed | FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje |
title_short | FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje |
title_sort | FLEA: Aprendizaje Federado aplicado a Analíticas de Aprendizaje |
topic | Federated Learning Analíticas de aprendizaje |
url | https://hdl.handle.net/20.500.12008/35984 |