On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance.
Resumen:
In recent years, Convolutional Neural Networks have attracted great attention establishing state-of-the-art results in many fields, most notably, in Computer Vision.In an attempt to leverage their success and ubiquity, approaches mapping non-euclidian data into two dimensional image-like feature maps, which are used as inputs to CNN architectures, have been proposed. Such mappings include common dimensionality reduction techniques such as PCA and t-SNE. CNN models trained on these feature maps have been found to perform well on a variety of tasks, ranging from text analysis to tumor classification using gene expression data.We assess these techniques in the context of genome enabled prediction of complex traits, finding that they do not outperform mapping SNP markers to pixels randomly. We also tested random mappings on a synthetic dataset commonly used for benchmarking, with the same outcome. These results contradict the claim that said approach is able to recover and exploit local structure. To account for both the underlying manifold and density from which data is sampled, we propose a method to construct these mappings based on Fermat distance. Our method outperforms other mappings, and thus presents a promising alternative which may potentiate the use of 2D-CNNs on SNP markers and other types of genetic data
2021 | |
Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364. | |
Genomic prediction CNN Dimensionality reduction |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21
https://hdl.handle.net/20.500.12008/36813 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522932688158720 |
---|---|
author | Elenter, Juan |
author2 | Etchebarne, Guillermo Hounie, Ignacio Fariello, María Inés Lecumberry, Federico |
author2_role | author author author author |
author_facet | Elenter, Juan Etchebarne, Guillermo Hounie, Ignacio Fariello, María Inés Lecumberry, Federico |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 e8c30e04e865334cac2bfcba70aad8cb 1996b8461bc290aef6a27d78c67b6b52 46d4db5e08970d6f8c8d0defca3a0e4e |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/36813/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/36813/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/36813/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/36813/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/36813/1/EEHFL21.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería. Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería. Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería. Fariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería. Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.none.fl_str_mv | Elenter, Juan Etchebarne, Guillermo Hounie, Ignacio Fariello, María Inés Lecumberry, Federico |
dc.date.accessioned.none.fl_str_mv | 2023-04-26T11:46:54Z |
dc.date.available.none.fl_str_mv | 2023-04-26T11:46:54Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | In recent years, Convolutional Neural Networks have attracted great attention establishing state-of-the-art results in many fields, most notably, in Computer Vision.In an attempt to leverage their success and ubiquity, approaches mapping non-euclidian data into two dimensional image-like feature maps, which are used as inputs to CNN architectures, have been proposed. Such mappings include common dimensionality reduction techniques such as PCA and t-SNE. CNN models trained on these feature maps have been found to perform well on a variety of tasks, ranging from text analysis to tumor classification using gene expression data.We assess these techniques in the context of genome enabled prediction of complex traits, finding that they do not outperform mapping SNP markers to pixels randomly. We also tested random mappings on a synthetic dataset commonly used for benchmarking, with the same outcome. These results contradict the claim that said approach is able to recover and exploit local structure. To account for both the underlying manifold and density from which data is sampled, we propose a method to construct these mappings based on Fermat distance. Our method outperforms other mappings, and thus presents a promising alternative which may potentiate the use of 2D-CNNs on SNP markers and other types of genetic data |
dc.description.es.fl_txt_mv | Los experimentos presentados en este trabajo se realizaron utilizando ClusterUy (sitio: https://cluster.uy). |
dc.description.sponsorship.none.fl_txt_mv | Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364. |
dc.format.extent.es.fl_str_mv | 1 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Elenter, J., Etchebarne, G., Hounie, I. y otros. On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance. [en línea]. Póster, 2021. |
dc.identifier.uri.none.fl_str_mv | https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21 https://hdl.handle.net/20.500.12008/36813 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Cold Spring Harbor Laboratory (CSHL) |
dc.relation.ispartof.es.fl_str_mv | Probabilistic Modeling in Genomics : Virtual Meeting, 14-16 apr. 2021, Cold Spring Harbor, NY, USA |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Genomic prediction CNN Dimensionality reduction |
dc.title.none.fl_str_mv | On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance. |
dc.type.es.fl_str_mv | Póster |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Los experimentos presentados en este trabajo se realizaron utilizando ClusterUy (sitio: https://cluster.uy). |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_75ac9fd3f3b6bbc2b7f9cb2e2209a092 |
identifier_str_mv | Elenter, J., Etchebarne, G., Hounie, I. y otros. On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance. [en línea]. Póster, 2021. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/36813 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Fariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería.Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-04-26T11:46:54Z2023-04-26T11:46:54Z2021Elenter, J., Etchebarne, G., Hounie, I. y otros. On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance. [en línea]. Póster, 2021.https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21https://hdl.handle.net/20.500.12008/36813Los experimentos presentados en este trabajo se realizaron utilizando ClusterUy (sitio: https://cluster.uy).In recent years, Convolutional Neural Networks have attracted great attention establishing state-of-the-art results in many fields, most notably, in Computer Vision.In an attempt to leverage their success and ubiquity, approaches mapping non-euclidian data into two dimensional image-like feature maps, which are used as inputs to CNN architectures, have been proposed. Such mappings include common dimensionality reduction techniques such as PCA and t-SNE. CNN models trained on these feature maps have been found to perform well on a variety of tasks, ranging from text analysis to tumor classification using gene expression data.We assess these techniques in the context of genome enabled prediction of complex traits, finding that they do not outperform mapping SNP markers to pixels randomly. We also tested random mappings on a synthetic dataset commonly used for benchmarking, with the same outcome. These results contradict the claim that said approach is able to recover and exploit local structure. To account for both the underlying manifold and density from which data is sampled, we propose a method to construct these mappings based on Fermat distance. Our method outperforms other mappings, and thus presents a promising alternative which may potentiate the use of 2D-CNNs on SNP markers and other types of genetic dataSubmitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-04-24T02:08:19Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEHFL21.pdf: 1232263 bytes, checksum: 46d4db5e08970d6f8c8d0defca3a0e4e (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-04-24T20:18:47Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEHFL21.pdf: 1232263 bytes, checksum: 46d4db5e08970d6f8c8d0defca3a0e4e (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-04-26T11:46:54Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEHFL21.pdf: 1232263 bytes, checksum: 46d4db5e08970d6f8c8d0defca3a0e4e (MD5) Previous issue date: 2021Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364.1 p.application/pdfenengCold Spring Harbor Laboratory (CSHL)Probabilistic Modeling in Genomics : Virtual Meeting, 14-16 apr. 2021, Cold Spring Harbor, NY, USALas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Genomic predictionCNNDimensionality reductionOn two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance.Pósterinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaElenter, JuanEtchebarne, GuillermoHounie, IgnacioFariello, María InésLecumberry, FedericoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/36813/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/36813/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/36813/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/36813/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALEEHFL21.pdfEEHFL21.pdfapplication/pdf1232263http://localhost:8080/xmlui/bitstream/20.500.12008/36813/1/EEHFL21.pdf46d4db5e08970d6f8c8d0defca3a0e4eMD5120.500.12008/368132023-04-26 08:46:54.413oai:colibri.udelar.edu.uy:20.500.12008/36813VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:20.287744COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance. Elenter, Juan Genomic prediction CNN Dimensionality reduction |
status_str | publishedVersion |
title | On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance. |
title_full | On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance. |
title_fullStr | On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance. |
title_full_unstemmed | On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance. |
title_short | On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance. |
title_sort | On two dimensional mappings of SNP marker data and CNNs : Overcoming the limitations of existing methods using Fermat distance. |
topic | Genomic prediction CNN Dimensionality reduction |
url | https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21 https://hdl.handle.net/20.500.12008/36813 |