Multiplicative processing in the modeling of cognitive activities in large neural networks

Valle Lisboa, Juan C - Pomi, Andrés - Mizraji Nathan, Eduardo Jacobo

Resumen:

Explaining the foundation of cognitive abilities in the processing of information by neural systems has been in the beginnings of biophysics since McCulloch and Pitts pioneered work within the biophysics school of Chicago in the 1940s and the interdisciplinary cybernetists meetings in the 1950s, inseparable from the birth of computing and artifcial intelligence. Since then, neural network models have traveled a long path, both in the biophysical and the computational disciplines. The biological, neurocomputational aspect reached its representational maturity with the Distributed Associative Memory models developed in the early 70 s. In this framework, the inclusion of signal-signal multiplication within neural network models was presented as a necessity to provide matrix associative memories with adaptive, context-sensitive associations, while greatly enhancing their computational capabilities. In this review, we show that several of the most successful neural network models use a form of multiplication of signals. We present several classical models that included such kind of multiplication and the computational reasons for the inclusion. We then turn to the diferent proposals about the possible biophysical implementation that underlies these computational capacities. We pinpoint the important ideas put forth by diferent theoretical models using a tensor product representation and show that these models endow memories with the context-dependent adaptive capabilities necessary to allow for evolutionary adaptation to changing and unpredictable environments. Finally, we show how the powerful abilities of contemporary computationally deep-learning models, inspired in neural networks, also depend on multiplications, and discuss some perspectives in view of the wide panorama unfolded. The computational relevance of multiplications calls for the development of new avenues of research that uncover the mechanisms our nervous system uses to achieve multiplication.


Detalles Bibliográficos
2023
Multiplication
Tensor product
Context-dependent memory
Associative memories
Neural networks
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/43175
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
_version_ 1807522807758716928
author Valle Lisboa, Juan C
author2 Pomi, Andrés
Mizraji Nathan, Eduardo Jacobo
author2_role author
author
author_facet Valle Lisboa, Juan C
Pomi, Andrés
Mizraji Nathan, Eduardo Jacobo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a0ebbeafb9d2ec7cbb19d7137ebc392c
8010f418ede1186e294ac5448996bd7e
71ed42ef0a0b648670f707320be37b90
75f1c98c44d9b8105a8f3710c6b92157
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/43175/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/43175/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/43175/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/43175/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/43175/1/10.1007.s12551-023-01074-5.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Valle Lisboa Juan C, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.
Pomi Andrés, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.
Mizraji Nathan Eduardo Jacobo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.
dc.creator.none.fl_str_mv Valle Lisboa, Juan C
Pomi, Andrés
Mizraji Nathan, Eduardo Jacobo
dc.date.accessioned.none.fl_str_mv 2024-03-19T12:16:12Z
dc.date.available.none.fl_str_mv 2024-03-19T12:16:12Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Explaining the foundation of cognitive abilities in the processing of information by neural systems has been in the beginnings of biophysics since McCulloch and Pitts pioneered work within the biophysics school of Chicago in the 1940s and the interdisciplinary cybernetists meetings in the 1950s, inseparable from the birth of computing and artifcial intelligence. Since then, neural network models have traveled a long path, both in the biophysical and the computational disciplines. The biological, neurocomputational aspect reached its representational maturity with the Distributed Associative Memory models developed in the early 70 s. In this framework, the inclusion of signal-signal multiplication within neural network models was presented as a necessity to provide matrix associative memories with adaptive, context-sensitive associations, while greatly enhancing their computational capabilities. In this review, we show that several of the most successful neural network models use a form of multiplication of signals. We present several classical models that included such kind of multiplication and the computational reasons for the inclusion. We then turn to the diferent proposals about the possible biophysical implementation that underlies these computational capacities. We pinpoint the important ideas put forth by diferent theoretical models using a tensor product representation and show that these models endow memories with the context-dependent adaptive capabilities necessary to allow for evolutionary adaptation to changing and unpredictable environments. Finally, we show how the powerful abilities of contemporary computationally deep-learning models, inspired in neural networks, also depend on multiplications, and discuss some perspectives in view of the wide panorama unfolded. The computational relevance of multiplications calls for the development of new avenues of research that uncover the mechanisms our nervous system uses to achieve multiplication.
dc.format.extent.es.fl_str_mv 19 h.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Valle Lisboa, J, Pomi, A y Mizraji Nathan, E. "Multiplicative processing in the modeling of cognitive activities in large neural networks". Biophysical Reviews. [en línea] 2023, 15(4): 767–785. 19 h. DOI: 10.1007/s12551-023-01074-5.
dc.identifier.doi.none.fl_str_mv 10.1007/s12551-023-01074-5
dc.identifier.issn.none.fl_str_mv 1867-2469
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/43175
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Springer
dc.relation.ispartof.es.fl_str_mv Biophysical Reviews, 2023, 15(4): 767–785.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Multiplication
Tensor product
Context-dependent memory
Associative memories
Neural networks
dc.title.none.fl_str_mv Multiplicative processing in the modeling of cognitive activities in large neural networks
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Explaining the foundation of cognitive abilities in the processing of information by neural systems has been in the beginnings of biophysics since McCulloch and Pitts pioneered work within the biophysics school of Chicago in the 1940s and the interdisciplinary cybernetists meetings in the 1950s, inseparable from the birth of computing and artifcial intelligence. Since then, neural network models have traveled a long path, both in the biophysical and the computational disciplines. The biological, neurocomputational aspect reached its representational maturity with the Distributed Associative Memory models developed in the early 70 s. In this framework, the inclusion of signal-signal multiplication within neural network models was presented as a necessity to provide matrix associative memories with adaptive, context-sensitive associations, while greatly enhancing their computational capabilities. In this review, we show that several of the most successful neural network models use a form of multiplication of signals. We present several classical models that included such kind of multiplication and the computational reasons for the inclusion. We then turn to the diferent proposals about the possible biophysical implementation that underlies these computational capacities. We pinpoint the important ideas put forth by diferent theoretical models using a tensor product representation and show that these models endow memories with the context-dependent adaptive capabilities necessary to allow for evolutionary adaptation to changing and unpredictable environments. Finally, we show how the powerful abilities of contemporary computationally deep-learning models, inspired in neural networks, also depend on multiplications, and discuss some perspectives in view of the wide panorama unfolded. The computational relevance of multiplications calls for the development of new avenues of research that uncover the mechanisms our nervous system uses to achieve multiplication.
eu_rights_str_mv openAccess
format article
id COLIBRI_7298e2247bcd042f0e9af19ef5b8739b
identifier_str_mv Valle Lisboa, J, Pomi, A y Mizraji Nathan, E. "Multiplicative processing in the modeling of cognitive activities in large neural networks". Biophysical Reviews. [en línea] 2023, 15(4): 767–785. 19 h. DOI: 10.1007/s12551-023-01074-5.
1867-2469
10.1007/s12551-023-01074-5
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/43175
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
spelling Valle Lisboa Juan C, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.Pomi Andrés, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.Mizraji Nathan Eduardo Jacobo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Biología.2024-03-19T12:16:12Z2024-03-19T12:16:12Z2023Valle Lisboa, J, Pomi, A y Mizraji Nathan, E. "Multiplicative processing in the modeling of cognitive activities in large neural networks". Biophysical Reviews. [en línea] 2023, 15(4): 767–785. 19 h. DOI: 10.1007/s12551-023-01074-5.1867-2469https://hdl.handle.net/20.500.12008/4317510.1007/s12551-023-01074-5Explaining the foundation of cognitive abilities in the processing of information by neural systems has been in the beginnings of biophysics since McCulloch and Pitts pioneered work within the biophysics school of Chicago in the 1940s and the interdisciplinary cybernetists meetings in the 1950s, inseparable from the birth of computing and artifcial intelligence. Since then, neural network models have traveled a long path, both in the biophysical and the computational disciplines. The biological, neurocomputational aspect reached its representational maturity with the Distributed Associative Memory models developed in the early 70 s. In this framework, the inclusion of signal-signal multiplication within neural network models was presented as a necessity to provide matrix associative memories with adaptive, context-sensitive associations, while greatly enhancing their computational capabilities. In this review, we show that several of the most successful neural network models use a form of multiplication of signals. We present several classical models that included such kind of multiplication and the computational reasons for the inclusion. We then turn to the diferent proposals about the possible biophysical implementation that underlies these computational capacities. We pinpoint the important ideas put forth by diferent theoretical models using a tensor product representation and show that these models endow memories with the context-dependent adaptive capabilities necessary to allow for evolutionary adaptation to changing and unpredictable environments. Finally, we show how the powerful abilities of contemporary computationally deep-learning models, inspired in neural networks, also depend on multiplications, and discuss some perspectives in view of the wide panorama unfolded. The computational relevance of multiplications calls for the development of new avenues of research that uncover the mechanisms our nervous system uses to achieve multiplication.Submitted by Pintos Natalia (nataliapintosmvd@gmail.com) on 2024-03-15T16:12:46Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1007.s12551-023-01074-5.pdf: 1454932 bytes, checksum: 75f1c98c44d9b8105a8f3710c6b92157 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2024-03-19T11:54:13Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1007.s12551-023-01074-5.pdf: 1454932 bytes, checksum: 75f1c98c44d9b8105a8f3710c6b92157 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-03-19T12:16:12Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) 10.1007.s12551-023-01074-5.pdf: 1454932 bytes, checksum: 75f1c98c44d9b8105a8f3710c6b92157 (MD5) Previous issue date: 202319 h.application/pdfenengSpringerBiophysical Reviews, 2023, 15(4): 767–785.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)MultiplicationTensor productContext-dependent memoryAssociative memoriesNeural networksMultiplicative processing in the modeling of cognitive activities in large neural networksArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaValle Lisboa, Juan CPomi, AndrésMizraji Nathan, Eduardo JacoboLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/43175/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/43175/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-820277http://localhost:8080/xmlui/bitstream/20.500.12008/43175/3/license_text8010f418ede1186e294ac5448996bd7eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/43175/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINAL10.1007.s12551-023-01074-5.pdf10.1007.s12551-023-01074-5.pdfapplication/pdf1454932http://localhost:8080/xmlui/bitstream/20.500.12008/43175/1/10.1007.s12551-023-01074-5.pdf75f1c98c44d9b8105a8f3710c6b92157MD5120.500.12008/431752024-03-19 09:16:12.677oai:colibri.udelar.edu.uy:20.500.12008/43175VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:24.983537COLIBRI - Universidad de la Repúblicafalse
spellingShingle Multiplicative processing in the modeling of cognitive activities in large neural networks
Valle Lisboa, Juan C
Multiplication
Tensor product
Context-dependent memory
Associative memories
Neural networks
status_str publishedVersion
title Multiplicative processing in the modeling of cognitive activities in large neural networks
title_full Multiplicative processing in the modeling of cognitive activities in large neural networks
title_fullStr Multiplicative processing in the modeling of cognitive activities in large neural networks
title_full_unstemmed Multiplicative processing in the modeling of cognitive activities in large neural networks
title_short Multiplicative processing in the modeling of cognitive activities in large neural networks
title_sort Multiplicative processing in the modeling of cognitive activities in large neural networks
topic Multiplication
Tensor product
Context-dependent memory
Associative memories
Neural networks
url https://hdl.handle.net/20.500.12008/43175