Asymptotic normality of the Nadaraya–Watson estimator for nonstationary functional data and applications to telecommunications
Resumen:
We study a nonparametric regression model, where the explanatory variable is nonstationary dependent functional data and the response variable is scalar. Assuming that the explanatory variable is a nonstationary mixture of stationary processes and general conditions of dependence of the observations (implied in particular by weak dependence), we obtain the asymptotic normality of the Nadaraya–Watson estimator. Under some additional regularity assumptions on the regression function, we obtain asymptotic confidence intervals for the regression function. We apply this result to estimate the quality of service for an end-to-end connection on a network
2007 | |
Nonparametric regression Functional data Asymptotic normality Nonstationarity Telecomunicaciones |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/38634 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Nonparametric regression based on discretely sampled curves
Autor(es):: Forzani, Liliana
Fecha de publicación:: (2020) -
Fermionic asymptotic symmetries in massless QED
Autor(es):: Campiglia Curcho, Miguel
Fecha de publicación:: (2023) -
Asymptotic symmetries and phase space extensions
Autor(es):: Peraza, Javier
Fecha de publicación:: (2022) -
End-to-end quality of service prediction based on functional regression
Autor(es):: Aspirot, Laura
Fecha de publicación:: (2005) -
Local implications of almost global stability
Autor(es):: Potrie, Rafael
Fecha de publicación:: (2009)