Self management of high density wireless networks
Supervisor(es): Baliosian, Javier
Resumen:
IEEE 802.11 wireless networks are very popular in today’s world. This popularity has been stimulated due to the use of mobile computing devices such as laptops, tablets, and Wi-Fi enabled phones. We can get 802.11 connectivity in schools, squares, parks and other public places. All of these places can have a high concentration of users. Moreover, there are other nonpublic places like lecture halls, hotel ballrooms, and convention centers that are common examples of spaces with high concentration of users in a high-density wireless communications environment. Dense deployments of wireless networks suffer from increased interference and, as a result, bad user experience. The interference caused by the co-channel and adjacent channel interference driven by co-located devices is one of the main issues to address to improve network performance. The limited number of nonoverlapping channels may lead to severe interference scenarios if no appropriated spectrum planning is employed. In this work, we present an in-depth review of research work for the channel allocation strategies. Then, we formalize the channel allocation as a minimization problem of the interference level and we propose three different manners to optimize channel assignment between participating Access Points with the aim to improve network performance. The algorithms that we propose can be classified as local and uncoordinated, coordinated and distributed, and centralized. The local and uncoordinated solution behaves well in our testbed but present oscillatory issues that we tackle with a feedback control technique. Finally, this work presents an evaluation of the strategies, on a testbed and on a simulation environment. In the testbed we demonstrate the practical deployability of the solutions and lead to the conclusion that the local and uncoordinated implementation is worthy to be considered as a good strategy for the channels allocation problem where Access Points works in isolated manner. In the simulation, we test the scalability of both, the coordinated and centralized solution, and we show that they can be deployed in networks with more than thirty Access Points and as a results, we conclude that the centralized implementation is the best strategy to perform optimization decisions for channel allocation in connected networks.
Las redes inalámbricas IEEE 802.11 son muy populares en el mundo actual. Esta popularidad ha sido estimulada debido al uso de dispositivos móviles tales como laptops, tablets y teléfonos Wi-Fi compatibles. Se puede tener conectividad 802.11 en escuelas, plazas, parques y otros lugares públicos. Todos estos lugares pueden tener una gran concentración de usuarios. Más aún, hay otros lugares no públicos como las bibliotecas, centros de convenciones, salas de conferencias en hoteles, los cuales también son ejemplo de espacios comunes con una gran concentración de usuarios en entornos de comunicación inalámbrica de alta densidad. Instalaciones de redes cámbricas densas experimentan una interferencia creciente, y como resultado, una mala experiencia de usuario. Las interferencias co-canal y de canal adyacente producidas por dispositivos próximos entre sí, son uno de los principales problemas a abordar para mejorar la performance de la red. El número limitado de canales que no se superponen pueden conducir a escenarios de severa interferencia si no se emplea una planificaci´on apropiada del espectro. En este trabajo, se presenta una revisi´on profunda de los trabajos de investigación para estrategias de asignaci´on de canales. Luego, se formaliza la asignación de canales como un problema de minimización del nivel de interferencia y se proponen tres diferentes maneras para optimizar la asignación de canales entre los Puntos de Acceso participantes con el objetivo de mejorar la performance de la red. Los algoritmos propuestos pueden clasificarse como local y no-coordinado, coordinado y distribuido, y centralizado. La solución local y no- coordinada se comparta de manera aceptable en el prototipo pero presenta problemas de oscilación que se aborda con una técnica de control por retro alimentación. Finalmente, este trabajo presenta una evaluación de las estrategias, en un prototipo y en un entorno de simulación. En el prototipo se demuestra el despliegue práctico de las soluciones y se llega a la conclusi´on que la implementación local y no-coordinada es digna de ser considerada como una buena estrategia para el problema de asignación de canales cuando los Puntos de Acceso trabajan en forma aislada. En la simulación, se prueban la escalabilidad de las soluciones coordinada y centralizada, y se muestra que pueden ser desplegadas en redes con más de treinta Puntos de Acceso y como resultado, se concluye que la implementación centralizada es la mejor estrategia para realizar decisiones de optimizaci´on para la asignaci´on de canales en redes conectadas.
2015 | |
Wireless networks High density IEEE 802.11 |
|
Español | |
Universidad de la República | |
COLIBRI | |
http://hdl.handle.net/20.500.12008/5163 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
Sumario: | IEEE 802.11 wireless networks are very popular in today’s world. This popularity has been stimulated due to the use of mobile computing devices such as laptops, tablets, and Wi-Fi enabled phones. We can get 802.11 connectivity in schools, squares, parks and other public places. All of these places can have a high concentration of users. Moreover, there are other nonpublic places like lecture halls, hotel ballrooms, and convention centers that are common examples of spaces with high concentration of users in a high-density wireless communications environment. Dense deployments of wireless networks suffer from increased interference and, as a result, bad user experience. The interference caused by the co-channel and adjacent channel interference driven by co-located devices is one of the main issues to address to improve network performance. The limited number of nonoverlapping channels may lead to severe interference scenarios if no appropriated spectrum planning is employed. In this work, we present an in-depth review of research work for the channel allocation strategies. Then, we formalize the channel allocation as a minimization problem of the interference level and we propose three different manners to optimize channel assignment between participating Access Points with the aim to improve network performance. The algorithms that we propose can be classified as local and uncoordinated, coordinated and distributed, and centralized. The local and uncoordinated solution behaves well in our testbed but present oscillatory issues that we tackle with a feedback control technique. Finally, this work presents an evaluation of the strategies, on a testbed and on a simulation environment. In the testbed we demonstrate the practical deployability of the solutions and lead to the conclusion that the local and uncoordinated implementation is worthy to be considered as a good strategy for the channels allocation problem where Access Points works in isolated manner. In the simulation, we test the scalability of both, the coordinated and centralized solution, and we show that they can be deployed in networks with more than thirty Access Points and as a results, we conclude that the centralized implementation is the best strategy to perform optimization decisions for channel allocation in connected networks. |
---|