Improving electric fraud detection using class imbalance strategies
Resumen:
Improving nontechnical loss detection is a huge challenge for electric companies. The great number of clients and the diversity of the different types of fraud makes this a very complex task. In this paper we present a fraud detection strategy based on class imbalance research. An automatic detection tool combining classification strategies is proposed. Individual classifiers such as One Class SVM, Cost Sensitive SVM (CS-SVM), Optimum Path Forest (OPF) and C4.5 Tree, and combination functions are designed taken special care in the data s class imbalance nature. Analysis over consumers historical kWh load profile data from Uruguayan Electric Company (UTE) shows that using combination and balancing techniques improves automatic detection performance.
2012 | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41146 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Fraud detection in electric power distribution : an approach that maximizes the economic return.
Autor(es):: Massaferro Saquieres, Pablo
Fecha de publicación:: (2020) -
Automatic eyes and nose detection using curvature analysis
Autor(es):: Di Martino, Matías
Fecha de publicación:: (2015) -
Optimum nMOS/pMOS imbalance for energy efficient digital circuits
Autor(es):: Veirano Núñez, Francisco
Fecha de publicación:: (2017) -
Fraud detection on power grids while transitioning to smart meters by leveraging multi-resolution consumption data
Autor(es):: Massaferro Saquieres, Pablo
Fecha de publicación:: (2022) -
Boundaries between tax savings and fraud punishable: fraud action in the tax law.
Autor(es):: Bacigalupo, Silvina
Fecha de publicación:: (2016)