Exploring FPGA optimizations to compute sparse numerical linear algebra kernels.
Resumen:
The solution of sparse triangular linear systems (sptrsv) is the bottleneck of many numerical methods. Thus, it is crucial to count with efficient implementations of such kernel, at least for commonly used platforms. In this sense, Field–Programmable Gate Arrays (FPGAs) have evolved greatly in the last years, entering the HPC hardware ecosystem largely due to their superior energy–efficiency relative to more established accelerators. Up until recently, the design for FPGAs implied the use of low–level Hardware Description Languages (HDL) such as VHDL or Verilog. Nowadays, manufacturers are making a large effort to adopt High–Level Synthesis languages like C/C++ or OpenCL, but the gap between their performance and that of HDLs is not yet fully studied. This work focuses on the performance offered by FPGAs to compute the sptrsv using OpenCL. For this purpose, we implement different parallel variants of this kernel and experimentally evaluate several setups, varying among others the work–group size, the number of compute units, the unroll–factor and the vectorization–factor.
2020 | |
FPGAs Sparse linear algebra SPTRSV Power consumption |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://link.springer.com/chapter/10.1007/978-3-030-44534-8_20
https://hdl.handle.net/20.500.12008/31512 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522896982048768 |
---|---|
author | Favaro, Federico |
author2 | Dufrechou, Ernesto Ezzatti, Pablo Oliver, Juan Pablo |
author2_role | author author author |
author_facet | Favaro, Federico Dufrechou, Ernesto Ezzatti, Pablo Oliver, Juan Pablo |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 57ba733c51fb39e1299884cf90cd9e12 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/31512/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/31512/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/31512/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/31512/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/31512/1/FDEO20.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Favaro Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. Dufrechou Ernesto, Universidad de la República (Uruguay). Facultad de Ingeniería. Ezzatti Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. Oliver Juan Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.none.fl_str_mv | Favaro, Federico Dufrechou, Ernesto Ezzatti, Pablo Oliver, Juan Pablo |
dc.date.accessioned.none.fl_str_mv | 2022-05-09T12:27:25Z |
dc.date.available.none.fl_str_mv | 2022-05-09T12:27:25Z |
dc.date.issued.none.fl_str_mv | 2020 |
dc.description.abstract.none.fl_txt_mv | The solution of sparse triangular linear systems (sptrsv) is the bottleneck of many numerical methods. Thus, it is crucial to count with efficient implementations of such kernel, at least for commonly used platforms. In this sense, Field–Programmable Gate Arrays (FPGAs) have evolved greatly in the last years, entering the HPC hardware ecosystem largely due to their superior energy–efficiency relative to more established accelerators. Up until recently, the design for FPGAs implied the use of low–level Hardware Description Languages (HDL) such as VHDL or Verilog. Nowadays, manufacturers are making a large effort to adopt High–Level Synthesis languages like C/C++ or OpenCL, but the gap between their performance and that of HDLs is not yet fully studied. This work focuses on the performance offered by FPGAs to compute the sptrsv using OpenCL. For this purpose, we implement different parallel variants of this kernel and experimentally evaluate several setups, varying among others the work–group size, the number of compute units, the unroll–factor and the vectorization–factor. |
dc.description.es.fl_txt_mv | Publicado en: Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2020. Lecture Notes in Computer Science, (LNCS, volume 12083), Springer, Cham, pp. 258-268 |
dc.format.extent.es.fl_str_mv | 11 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Favaro, F., Dufrechou, E., Ezzatti, P.y otros. Exploring FPGA optimizations to compute sparse numerical linear algebra kernels [Preprint]. Publicado en : Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2020. Lecture Notes in Computer Science, vol. 12083. Springer, Cham. DOI:10.1007/978-3-030-44534-8_20 |
dc.identifier.uri.none.fl_str_mv | https://link.springer.com/chapter/10.1007/978-3-030-44534-8_20 https://hdl.handle.net/20.500.12008/31512 |
dc.language.iso.none.fl_str_mv | en eng |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | FPGAs Sparse linear algebra SPTRSV Power consumption |
dc.title.none.fl_str_mv | Exploring FPGA optimizations to compute sparse numerical linear algebra kernels. |
dc.type.es.fl_str_mv | Preprint |
dc.type.none.fl_str_mv | info:eu-repo/semantics/preprint |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/submittedVersion |
description | Publicado en: Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2020. Lecture Notes in Computer Science, (LNCS, volume 12083), Springer, Cham, pp. 258-268 |
eu_rights_str_mv | openAccess |
format | preprint |
id | COLIBRI_6d1f8502b96d5d000fa7fe297f7e8271 |
identifier_str_mv | Favaro, F., Dufrechou, E., Ezzatti, P.y otros. Exploring FPGA optimizations to compute sparse numerical linear algebra kernels [Preprint]. Publicado en : Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2020. Lecture Notes in Computer Science, vol. 12083. Springer, Cham. DOI:10.1007/978-3-030-44534-8_20 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/31512 |
publishDate | 2020 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Favaro Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.Dufrechou Ernesto, Universidad de la República (Uruguay). Facultad de Ingeniería.Ezzatti Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Oliver Juan Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.2022-05-09T12:27:25Z2022-05-09T12:27:25Z2020Favaro, F., Dufrechou, E., Ezzatti, P.y otros. Exploring FPGA optimizations to compute sparse numerical linear algebra kernels [Preprint]. Publicado en : Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2020. Lecture Notes in Computer Science, vol. 12083. Springer, Cham. DOI:10.1007/978-3-030-44534-8_20https://link.springer.com/chapter/10.1007/978-3-030-44534-8_20https://hdl.handle.net/20.500.12008/31512Publicado en: Applied Reconfigurable Computing. Architectures, Tools, and Applications. ARC 2020. Lecture Notes in Computer Science, (LNCS, volume 12083), Springer, Cham, pp. 258-268The solution of sparse triangular linear systems (sptrsv) is the bottleneck of many numerical methods. Thus, it is crucial to count with efficient implementations of such kernel, at least for commonly used platforms. In this sense, Field–Programmable Gate Arrays (FPGAs) have evolved greatly in the last years, entering the HPC hardware ecosystem largely due to their superior energy–efficiency relative to more established accelerators. Up until recently, the design for FPGAs implied the use of low–level Hardware Description Languages (HDL) such as VHDL or Verilog. Nowadays, manufacturers are making a large effort to adopt High–Level Synthesis languages like C/C++ or OpenCL, but the gap between their performance and that of HDLs is not yet fully studied. This work focuses on the performance offered by FPGAs to compute the sptrsv using OpenCL. For this purpose, we implement different parallel variants of this kernel and experimentally evaluate several setups, varying among others the work–group size, the number of compute units, the unroll–factor and the vectorization–factor.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-05-05T23:00:20Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) FDEO20.pdf: 310307 bytes, checksum: 57ba733c51fb39e1299884cf90cd9e12 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-05-06T18:56:30Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) FDEO20.pdf: 310307 bytes, checksum: 57ba733c51fb39e1299884cf90cd9e12 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-05-09T12:27:25Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) FDEO20.pdf: 310307 bytes, checksum: 57ba733c51fb39e1299884cf90cd9e12 (MD5) Previous issue date: 202011 p.application/pdfenengLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)FPGAsSparse linear algebraSPTRSVPower consumptionExploring FPGA optimizations to compute sparse numerical linear algebra kernels.Preprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaFavaro, FedericoDufrechou, ErnestoEzzatti, PabloOliver, Juan PabloLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/31512/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/31512/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/31512/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/31512/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALFDEO20.pdfFDEO20.pdfapplication/pdf310307http://localhost:8080/xmlui/bitstream/20.500.12008/31512/1/FDEO20.pdf57ba733c51fb39e1299884cf90cd9e12MD5120.500.12008/315122024-05-03 15:25:33.245oai:colibri.udelar.edu.uy:20.500.12008/31512VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:10.111796COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Exploring FPGA optimizations to compute sparse numerical linear algebra kernels. Favaro, Federico FPGAs Sparse linear algebra SPTRSV Power consumption |
status_str | submittedVersion |
title | Exploring FPGA optimizations to compute sparse numerical linear algebra kernels. |
title_full | Exploring FPGA optimizations to compute sparse numerical linear algebra kernels. |
title_fullStr | Exploring FPGA optimizations to compute sparse numerical linear algebra kernels. |
title_full_unstemmed | Exploring FPGA optimizations to compute sparse numerical linear algebra kernels. |
title_short | Exploring FPGA optimizations to compute sparse numerical linear algebra kernels. |
title_sort | Exploring FPGA optimizations to compute sparse numerical linear algebra kernels. |
topic | FPGAs Sparse linear algebra SPTRSV Power consumption |
url | https://link.springer.com/chapter/10.1007/978-3-030-44534-8_20 https://hdl.handle.net/20.500.12008/31512 |