BMS Algebra, Double soft theorems, and all that

Campiglia Curcho, Miguel - Laddha, Alok

Resumen:

The Lie algebra generated by supertranslation and superrotation vector fields at null infinity, known as the extended BMS (eBMS) algebra is expected to be a symmetry algebra of the quantum gravity S matrix. However, the algebra of commutators of the quantized eBMS charges has been a thorny issue in the literature. On the one hand, recent developments in celestial holography point towards a symmetry algebra which is a closed Lie algebra with no central extension or anomaly, and on the other hand, work of Distler, Flauger and Horn has shown that when these charges are quantized at null infinity, the commutator of a supertranslation and a superrotation charge does not close into a supertranslation but gets deformed by a 2 cocycle term, which is consistent with the original proposal of Barnich and Troessaert. In this paper, we revisit this issue in light of recent developments in the classical understanding of superrotation charges. We show that, for extended BMS symmetries, a phase space at null infinity is an extension of hitherto considered phase spaces which also includes a mode associated to the spin memory and its conjugate partner. We also show that for holomorphic vector fields on the celestial plane, quantization of the eBMS charges in the new phase space leads to an algebra which closes without a 2 cocycle. The degenerate vacua are labelled by the soft news and a Schwarzian mode which corresponds to deformations of the celestial metric by superrotations. The closed eBMS quantum algebra may also lead to a convergence between two manifestations of asymptotic symmetries, one via asymptotic quantization at null infinity and the other through celestial holography.


Detalles Bibliográficos
2021
ANII: FCE_1_2019_1_155865
High Energy Physics - Theory
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/39901
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
_version_ 1807522799652175872
author Campiglia Curcho, Miguel
author2 Laddha, Alok
author2_role author
author_facet Campiglia Curcho, Miguel
Laddha, Alok
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a0ebbeafb9d2ec7cbb19d7137ebc392c
aaf2791046b84599cb1e37492908be62
9fdbed07f52437945402c4e70fa4773e
3c302ce16ef371b2695dd422c59957a2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/39901/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/39901/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/39901/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/39901/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/39901/1/2106.14717.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Campiglia Curcho Miguel, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.
Laddha Alok, Chennai Mathematical Institute
dc.creator.none.fl_str_mv Campiglia Curcho, Miguel
Laddha, Alok
dc.date.accessioned.none.fl_str_mv 2023-09-14T12:37:12Z
dc.date.available.none.fl_str_mv 2023-09-14T12:37:12Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv The Lie algebra generated by supertranslation and superrotation vector fields at null infinity, known as the extended BMS (eBMS) algebra is expected to be a symmetry algebra of the quantum gravity S matrix. However, the algebra of commutators of the quantized eBMS charges has been a thorny issue in the literature. On the one hand, recent developments in celestial holography point towards a symmetry algebra which is a closed Lie algebra with no central extension or anomaly, and on the other hand, work of Distler, Flauger and Horn has shown that when these charges are quantized at null infinity, the commutator of a supertranslation and a superrotation charge does not close into a supertranslation but gets deformed by a 2 cocycle term, which is consistent with the original proposal of Barnich and Troessaert. In this paper, we revisit this issue in light of recent developments in the classical understanding of superrotation charges. We show that, for extended BMS symmetries, a phase space at null infinity is an extension of hitherto considered phase spaces which also includes a mode associated to the spin memory and its conjugate partner. We also show that for holomorphic vector fields on the celestial plane, quantization of the eBMS charges in the new phase space leads to an algebra which closes without a 2 cocycle. The degenerate vacua are labelled by the soft news and a Schwarzian mode which corresponds to deformations of the celestial metric by superrotations. The closed eBMS quantum algebra may also lead to a convergence between two manifestations of asymptotic symmetries, one via asymptotic quantization at null infinity and the other through celestial holography.
dc.description.sponsorship.none.fl_txt_mv ANII: FCE_1_2019_1_155865
dc.format.extent.es.fl_str_mv 36 h.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Campiglia Curcho, M y Laddha, A. "BMS Algebra, Double soft theorems, and all that". High Energy Physics - Theory. [en línea] 2021 2021, arXiv:2106.14717, Jun 2021. 36 h. DOI: 10.48550/arXiv.2106.14717
dc.identifier.doi.none.fl_str_mv 10.48550/arXiv.2106.14717
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/39901
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv arXiv
dc.relation.ispartof.es.fl_str_mv High Energy Physics - Theory, 2021, arXiv:2106.14717, Jun 2021
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv High Energy Physics - Theory
dc.title.none.fl_str_mv BMS Algebra, Double soft theorems, and all that
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description The Lie algebra generated by supertranslation and superrotation vector fields at null infinity, known as the extended BMS (eBMS) algebra is expected to be a symmetry algebra of the quantum gravity S matrix. However, the algebra of commutators of the quantized eBMS charges has been a thorny issue in the literature. On the one hand, recent developments in celestial holography point towards a symmetry algebra which is a closed Lie algebra with no central extension or anomaly, and on the other hand, work of Distler, Flauger and Horn has shown that when these charges are quantized at null infinity, the commutator of a supertranslation and a superrotation charge does not close into a supertranslation but gets deformed by a 2 cocycle term, which is consistent with the original proposal of Barnich and Troessaert. In this paper, we revisit this issue in light of recent developments in the classical understanding of superrotation charges. We show that, for extended BMS symmetries, a phase space at null infinity is an extension of hitherto considered phase spaces which also includes a mode associated to the spin memory and its conjugate partner. We also show that for holomorphic vector fields on the celestial plane, quantization of the eBMS charges in the new phase space leads to an algebra which closes without a 2 cocycle. The degenerate vacua are labelled by the soft news and a Schwarzian mode which corresponds to deformations of the celestial metric by superrotations. The closed eBMS quantum algebra may also lead to a convergence between two manifestations of asymptotic symmetries, one via asymptotic quantization at null infinity and the other through celestial holography.
eu_rights_str_mv openAccess
format preprint
id COLIBRI_6ab23a3edfb9c7e0d8e6a4e9734ac2b0
identifier_str_mv Campiglia Curcho, M y Laddha, A. "BMS Algebra, Double soft theorems, and all that". High Energy Physics - Theory. [en línea] 2021 2021, arXiv:2106.14717, Jun 2021. 36 h. DOI: 10.48550/arXiv.2106.14717
10.48550/arXiv.2106.14717
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/39901
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
spelling Campiglia Curcho Miguel, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.Laddha Alok, Chennai Mathematical Institute2023-09-14T12:37:12Z2023-09-14T12:37:12Z2021Campiglia Curcho, M y Laddha, A. "BMS Algebra, Double soft theorems, and all that". High Energy Physics - Theory. [en línea] 2021 2021, arXiv:2106.14717, Jun 2021. 36 h. DOI: 10.48550/arXiv.2106.14717https://hdl.handle.net/20.500.12008/3990110.48550/arXiv.2106.14717The Lie algebra generated by supertranslation and superrotation vector fields at null infinity, known as the extended BMS (eBMS) algebra is expected to be a symmetry algebra of the quantum gravity S matrix. However, the algebra of commutators of the quantized eBMS charges has been a thorny issue in the literature. On the one hand, recent developments in celestial holography point towards a symmetry algebra which is a closed Lie algebra with no central extension or anomaly, and on the other hand, work of Distler, Flauger and Horn has shown that when these charges are quantized at null infinity, the commutator of a supertranslation and a superrotation charge does not close into a supertranslation but gets deformed by a 2 cocycle term, which is consistent with the original proposal of Barnich and Troessaert. In this paper, we revisit this issue in light of recent developments in the classical understanding of superrotation charges. We show that, for extended BMS symmetries, a phase space at null infinity is an extension of hitherto considered phase spaces which also includes a mode associated to the spin memory and its conjugate partner. We also show that for holomorphic vector fields on the celestial plane, quantization of the eBMS charges in the new phase space leads to an algebra which closes without a 2 cocycle. The degenerate vacua are labelled by the soft news and a Schwarzian mode which corresponds to deformations of the celestial metric by superrotations. The closed eBMS quantum algebra may also lead to a convergence between two manifestations of asymptotic symmetries, one via asymptotic quantization at null infinity and the other through celestial holography.Submitted by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-09-14T11:10:51Z No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 2106.14717.pdf: 394210 bytes, checksum: 3c302ce16ef371b2695dd422c59957a2 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-09-14T12:08:02Z (GMT) No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 2106.14717.pdf: 394210 bytes, checksum: 3c302ce16ef371b2695dd422c59957a2 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-09-14T12:37:12Z (GMT). No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 2106.14717.pdf: 394210 bytes, checksum: 3c302ce16ef371b2695dd422c59957a2 (MD5) Previous issue date: 2021ANII: FCE_1_2019_1_15586536 h.application/pdfenengarXivHigh Energy Physics - Theory, 2021, arXiv:2106.14717, Jun 2021Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)High Energy Physics - TheoryBMS Algebra, Double soft theorems, and all thatPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCampiglia Curcho, MiguelLaddha, AlokLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/39901/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/39901/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-838534http://localhost:8080/xmlui/bitstream/20.500.12008/39901/3/license_textaaf2791046b84599cb1e37492908be62MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-819875http://localhost:8080/xmlui/bitstream/20.500.12008/39901/4/license_rdf9fdbed07f52437945402c4e70fa4773eMD54ORIGINAL2106.14717.pdf2106.14717.pdfapplication/pdf394210http://localhost:8080/xmlui/bitstream/20.500.12008/39901/1/2106.14717.pdf3c302ce16ef371b2695dd422c59957a2MD5120.500.12008/399012023-09-14 09:37:12.208oai:colibri.udelar.edu.uy:20.500.12008/39901VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:07.460060COLIBRI - Universidad de la Repúblicafalse
spellingShingle BMS Algebra, Double soft theorems, and all that
Campiglia Curcho, Miguel
High Energy Physics - Theory
status_str submittedVersion
title BMS Algebra, Double soft theorems, and all that
title_full BMS Algebra, Double soft theorems, and all that
title_fullStr BMS Algebra, Double soft theorems, and all that
title_full_unstemmed BMS Algebra, Double soft theorems, and all that
title_short BMS Algebra, Double soft theorems, and all that
title_sort BMS Algebra, Double soft theorems, and all that
topic High Energy Physics - Theory
url https://hdl.handle.net/20.500.12008/39901