Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos

Pío Alvarez, Sergio

Supervisor(es): Marotta, Adriana - Tansini, Libertad

Resumen:

El aseguramiento de la calidad de los datos con los cuales se trabaja es crucial para tomar decisiones acertadas, efectivas y a tiempo. Lograr una buena calidad de datos no solo implica trabajar con datos que no contengan errores, sino que también incluye características tales como la completitud (tener la mayor cantidad posible de datos), la actualidad (que los datos sean lo más actuales posibles), la usabilidad (que los datos sean adecuados y comprensibles), y la disponibilidad (que se pueda acceder a ellos cuando se los necesita), entre muchas otras. La minería de datos, por otra parte, permite descubrir información oculta en los datos, utilizando un paradigma inverso al usual: mientras normalmente se comienza planteando una hipótesis para luego tratar de confirmarla, la minería de datos propone identificar en forma automatizada patrones que pueden resultar interesantes y que posiblemente no hayan sido imaginados por los analistas. Si bien ambas áreas son altamente relevantes en el mundo académico e industrial de la actualidad, donde la informática brinda un soporte tecnológico apropiado, la literatura existente y algunas experiencias muestran que existe muy poca o nula integración entre la calidad de datos y la minería de datos. En general, los trabajos pertenecientes a un área suelen ser ajenos a los existentes en la otra. En este trabajo se realiza un estudio en profundidad de las dos áreas introducidas para luego hacer un análisis de los mecanismos que permitirían vincularlas, y finalmente implementar técnicas que permitan abordar el análisis de la calidad de conjuntos de datos aprovechando las capacidades inherentes de la minería de datos. El trabajo presenta dos propuestas nuevas para la aplicación de técnicas de minería de datos para la evaluación de la calidad de datos, que fueron presentadas en dos eventos internacionales especializados. Una de ellas se orienta a la determinación de si un conjunto de datos es suficientemente actualizado, y la otra se orienta al análisis de datos faltantes. Además, se presenta también una tercera propuesta, aún en etapa de formulación, para evaluar qué tan usable es un conjunto de datos en base a sus características. Palabras clave: calidad de datos, minería de datos, minería de calidad de datos. El trabajo presenta dos propuestas nuevas para la aplicación de técnicas de minería de datos parala evaluación de la calidad de datos, que fueron presentadas en dos eventos internacionales especializados. Una de ellas se orienta a la determinación de si un conjunto de datos es suficientemente actualizado, y la otra se orienta al análisis de datos faltantes. Además, se presenta también una tercera propuesta, aún en etapa de formulación, para evaluar qué tan usable es un conjunto de datos en base a sus características.


Detalles Bibliográficos
2018
Calidad de datos
Minería de datos
Minería de calidad de datos
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/25468
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523182152777728
author Pío Alvarez, Sergio
author_facet Pío Alvarez, Sergio
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
47b4ef0fcf3525544879e94183c90d75
1996b8461bc290aef6a27d78c67b6b52
c95afc2069255a8b97b5a98aff595c85
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/25468/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/25468/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/25468/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/25468/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/25468/1/PIO18.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Pío Alvarez Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Marotta, Adriana
Tansini, Libertad
dc.creator.none.fl_str_mv Pío Alvarez, Sergio
dc.date.accessioned.none.fl_str_mv 2020-10-06T18:15:38Z
dc.date.available.none.fl_str_mv 2020-10-06T18:15:38Z
dc.date.issued.none.fl_str_mv 2018
dc.description.abstract.none.fl_txt_mv El aseguramiento de la calidad de los datos con los cuales se trabaja es crucial para tomar decisiones acertadas, efectivas y a tiempo. Lograr una buena calidad de datos no solo implica trabajar con datos que no contengan errores, sino que también incluye características tales como la completitud (tener la mayor cantidad posible de datos), la actualidad (que los datos sean lo más actuales posibles), la usabilidad (que los datos sean adecuados y comprensibles), y la disponibilidad (que se pueda acceder a ellos cuando se los necesita), entre muchas otras. La minería de datos, por otra parte, permite descubrir información oculta en los datos, utilizando un paradigma inverso al usual: mientras normalmente se comienza planteando una hipótesis para luego tratar de confirmarla, la minería de datos propone identificar en forma automatizada patrones que pueden resultar interesantes y que posiblemente no hayan sido imaginados por los analistas. Si bien ambas áreas son altamente relevantes en el mundo académico e industrial de la actualidad, donde la informática brinda un soporte tecnológico apropiado, la literatura existente y algunas experiencias muestran que existe muy poca o nula integración entre la calidad de datos y la minería de datos. En general, los trabajos pertenecientes a un área suelen ser ajenos a los existentes en la otra. En este trabajo se realiza un estudio en profundidad de las dos áreas introducidas para luego hacer un análisis de los mecanismos que permitirían vincularlas, y finalmente implementar técnicas que permitan abordar el análisis de la calidad de conjuntos de datos aprovechando las capacidades inherentes de la minería de datos. El trabajo presenta dos propuestas nuevas para la aplicación de técnicas de minería de datos para la evaluación de la calidad de datos, que fueron presentadas en dos eventos internacionales especializados. Una de ellas se orienta a la determinación de si un conjunto de datos es suficientemente actualizado, y la otra se orienta al análisis de datos faltantes. Además, se presenta también una tercera propuesta, aún en etapa de formulación, para evaluar qué tan usable es un conjunto de datos en base a sus características. Palabras clave: calidad de datos, minería de datos, minería de calidad de datos. El trabajo presenta dos propuestas nuevas para la aplicación de técnicas de minería de datos parala evaluación de la calidad de datos, que fueron presentadas en dos eventos internacionales especializados. Una de ellas se orienta a la determinación de si un conjunto de datos es suficientemente actualizado, y la otra se orienta al análisis de datos faltantes. Además, se presenta también una tercera propuesta, aún en etapa de formulación, para evaluar qué tan usable es un conjunto de datos en base a sus características.
dc.format.extent.es.fl_str_mv 98 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Pío Alvarez, S. Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO - PEDECIBA, 2018.
dc.identifier.issn.none.fl_str_mv 1688-2792
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/25468
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Calidad de datos
Minería de datos
Minería de calidad de datos
dc.title.none.fl_str_mv Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description El aseguramiento de la calidad de los datos con los cuales se trabaja es crucial para tomar decisiones acertadas, efectivas y a tiempo. Lograr una buena calidad de datos no solo implica trabajar con datos que no contengan errores, sino que también incluye características tales como la completitud (tener la mayor cantidad posible de datos), la actualidad (que los datos sean lo más actuales posibles), la usabilidad (que los datos sean adecuados y comprensibles), y la disponibilidad (que se pueda acceder a ellos cuando se los necesita), entre muchas otras. La minería de datos, por otra parte, permite descubrir información oculta en los datos, utilizando un paradigma inverso al usual: mientras normalmente se comienza planteando una hipótesis para luego tratar de confirmarla, la minería de datos propone identificar en forma automatizada patrones que pueden resultar interesantes y que posiblemente no hayan sido imaginados por los analistas. Si bien ambas áreas son altamente relevantes en el mundo académico e industrial de la actualidad, donde la informática brinda un soporte tecnológico apropiado, la literatura existente y algunas experiencias muestran que existe muy poca o nula integración entre la calidad de datos y la minería de datos. En general, los trabajos pertenecientes a un área suelen ser ajenos a los existentes en la otra. En este trabajo se realiza un estudio en profundidad de las dos áreas introducidas para luego hacer un análisis de los mecanismos que permitirían vincularlas, y finalmente implementar técnicas que permitan abordar el análisis de la calidad de conjuntos de datos aprovechando las capacidades inherentes de la minería de datos. El trabajo presenta dos propuestas nuevas para la aplicación de técnicas de minería de datos para la evaluación de la calidad de datos, que fueron presentadas en dos eventos internacionales especializados. Una de ellas se orienta a la determinación de si un conjunto de datos es suficientemente actualizado, y la otra se orienta al análisis de datos faltantes. Además, se presenta también una tercera propuesta, aún en etapa de formulación, para evaluar qué tan usable es un conjunto de datos en base a sus características. Palabras clave: calidad de datos, minería de datos, minería de calidad de datos. El trabajo presenta dos propuestas nuevas para la aplicación de técnicas de minería de datos parala evaluación de la calidad de datos, que fueron presentadas en dos eventos internacionales especializados. Una de ellas se orienta a la determinación de si un conjunto de datos es suficientemente actualizado, y la otra se orienta al análisis de datos faltantes. Además, se presenta también una tercera propuesta, aún en etapa de formulación, para evaluar qué tan usable es un conjunto de datos en base a sus características.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_6a28fb24e77dffc96a7b91bee110f6d9
identifier_str_mv Pío Alvarez, S. Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO - PEDECIBA, 2018.
1688-2792
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/25468
publishDate 2018
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Pío Alvarez Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería2020-10-06T18:15:38Z2020-10-06T18:15:38Z2018Pío Alvarez, S. Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos [en línea] Tesis de maestría. Montevideo : Udelar. FI. INCO - PEDECIBA, 2018.1688-2792https://hdl.handle.net/20.500.12008/25468El aseguramiento de la calidad de los datos con los cuales se trabaja es crucial para tomar decisiones acertadas, efectivas y a tiempo. Lograr una buena calidad de datos no solo implica trabajar con datos que no contengan errores, sino que también incluye características tales como la completitud (tener la mayor cantidad posible de datos), la actualidad (que los datos sean lo más actuales posibles), la usabilidad (que los datos sean adecuados y comprensibles), y la disponibilidad (que se pueda acceder a ellos cuando se los necesita), entre muchas otras. La minería de datos, por otra parte, permite descubrir información oculta en los datos, utilizando un paradigma inverso al usual: mientras normalmente se comienza planteando una hipótesis para luego tratar de confirmarla, la minería de datos propone identificar en forma automatizada patrones que pueden resultar interesantes y que posiblemente no hayan sido imaginados por los analistas. Si bien ambas áreas son altamente relevantes en el mundo académico e industrial de la actualidad, donde la informática brinda un soporte tecnológico apropiado, la literatura existente y algunas experiencias muestran que existe muy poca o nula integración entre la calidad de datos y la minería de datos. En general, los trabajos pertenecientes a un área suelen ser ajenos a los existentes en la otra. En este trabajo se realiza un estudio en profundidad de las dos áreas introducidas para luego hacer un análisis de los mecanismos que permitirían vincularlas, y finalmente implementar técnicas que permitan abordar el análisis de la calidad de conjuntos de datos aprovechando las capacidades inherentes de la minería de datos. El trabajo presenta dos propuestas nuevas para la aplicación de técnicas de minería de datos para la evaluación de la calidad de datos, que fueron presentadas en dos eventos internacionales especializados. Una de ellas se orienta a la determinación de si un conjunto de datos es suficientemente actualizado, y la otra se orienta al análisis de datos faltantes. Además, se presenta también una tercera propuesta, aún en etapa de formulación, para evaluar qué tan usable es un conjunto de datos en base a sus características. Palabras clave: calidad de datos, minería de datos, minería de calidad de datos. El trabajo presenta dos propuestas nuevas para la aplicación de técnicas de minería de datos parala evaluación de la calidad de datos, que fueron presentadas en dos eventos internacionales especializados. Una de ellas se orienta a la determinación de si un conjunto de datos es suficientemente actualizado, y la otra se orienta al análisis de datos faltantes. Además, se presenta también una tercera propuesta, aún en etapa de formulación, para evaluar qué tan usable es un conjunto de datos en base a sus características.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2020-10-06T14:45:18Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) PIO18.pdf: 894428 bytes, checksum: c95afc2069255a8b97b5a98aff595c85 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-10-06T18:13:37Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) PIO18.pdf: 894428 bytes, checksum: c95afc2069255a8b97b5a98aff595c85 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-10-06T18:15:38Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) PIO18.pdf: 894428 bytes, checksum: c95afc2069255a8b97b5a98aff595c85 (MD5) Previous issue date: 201898 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Calidad de datosMinería de datosMinería de calidad de datosMinería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datosTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaPío Alvarez, SergioMarotta, AdrianaTansini, LibertadUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/25468/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/25468/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838725http://localhost:8080/xmlui/bitstream/20.500.12008/25468/3/license_text47b4ef0fcf3525544879e94183c90d75MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/25468/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALPIO18.pdfPIO18.pdfapplication/pdf894428http://localhost:8080/xmlui/bitstream/20.500.12008/25468/1/PIO18.pdfc95afc2069255a8b97b5a98aff595c85MD5120.500.12008/254682020-10-06 15:15:38.443oai:colibri.udelar.edu.uy:20.500.12008/25468VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:26.808063COLIBRI - Universidad de la Repúblicafalse
spellingShingle Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos
Pío Alvarez, Sergio
Calidad de datos
Minería de datos
Minería de calidad de datos
status_str acceptedVersion
title Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos
title_full Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos
title_fullStr Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos
title_full_unstemmed Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos
title_short Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos
title_sort Minería de calidad de datos : aplicación de técnicas de minería de datos para la evaluación de la calidad de los datos
topic Calidad de datos
Minería de datos
Minería de calidad de datos
url https://hdl.handle.net/20.500.12008/25468