Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas

Otero Larre Borges, Lucia

Supervisor(es): Salinas Grecco, GustavoMiranda Vizuete, Antonio (Co-Director de tesis)

Resumen:

La selenocisteína (Sec) es incorporada a la cadena polipeptídica mediante un mecanismo no canónico: una secuencia de incorporación de Sec (SECIS) presente en el ARNm de la selenoproteína reprograma al codón UGA para incorporar Sec. Si bien este mecanismo ha sido completamente elucidado en bacterias, en eucariotas aún restan aspectos por comprender. La proteína de unión al elemento SECIS (SBP2) media la incorporación de Sec, sin embargo los roles que cumplen sus dominios y el impacto de su deficiencia en la inserción de Sec no se conoce completamente. Por otra parte, existen genes que se han reportado como involucrados o presuntamente involucrados en la decodificación e incorporación de Sec cuyas funciones no han sido esclarecidas. Para estudiar algunos de estos aspectos, utilizamos Caenorhabditis elegans como modelo ya que se trata de un organismo eucariota simple que posee toda la maquinaria de incorporación de Sec a disposición de una única selenoproteína: la tiorredoxina reductasa citosólica (TRXR-1). Todas las SBP2 descritas hasta el inicio de esta tesis poseían un dominio de unión al ARN (RBD) y uno de incorporación de Sec (SID). Mediante análisis in silico identificamos la SBP2 de C. elegans y, sorprendentemente, encontramos que carece de SID y que consiste únicamente en un RBD. Generamos una estirpe mutante en sbp2 que resultó incapaz de incorporar Sec, demostrando así que este gen es esencial para este fin. El análisis de genomas de otros nematodos reveló que la ausencia de SID es característica del linaje y que el mantenimiento de la incorporación de Sec se encuentra ligado a la TRXR-1. Se deduce entonces que el mecanismo de incorporación de Sec en este filo difiere, al menos en parte, del ya reportado para otros eucariotas; SID podría ser completamente prescindible, u otra proteína, no identificada aún, podría suplir sus funciones. Encontramos también que los nematodos del clado Tylenchina han perdido la capacidad de incorporar Sec. Estos son los primeros animales no artrópodos que se reportan que perdieron esta característica; a nivel genético perdieron todos los genes involucrados en su decodificación, excepto SecP43, que se presume tendría un rol adicional a la metilación de una base del anticodón del ARNtSec y el transporte de complejos supramoleculares asociados a los ARNm de selenoproteínas. Mediante ensayos con una estirpe mutante en SecP43 encontramos que si bien no este gen no es esencial para la incorporación de Sec en condiciones óptimas de laboratorio, es necesario para la correcta expresión de TRXR-1 en condiciones desafiantes. 4 Análogamente, demostramos que R13A5.9 , un gen asociado a la incorporación de Sec, pero de función desconocida, es requerido para la incorporación de Sec en condiciones desafiantes. Así, es probable que R13A5.9, como SecP43, tenga funciones regulatorias en el metabolismo de selenio y/o la incorporación de Sec. Globalmente, nuestros resultados indican que C. elegans y el linaje nematodo proveen indicios claves para comprender el mecanismo de incorporación de Sec y la evolución de la utilización de Sec y de los genes asociados a su incorporación, así como de las selenoproteínas y los selenoproteomas. Finalmente nuestros estudios mostraron evidencia de inicio no canónico de la traducción en C. elegans , mecanismo que no había sido previamente descrito en este organismo modelo. Se identificaron dos genes (uno de ellos sbp2 ) cuya traducción no iniciaría en AUG sino en AUU. Se prevé que el número de transcriptos que tengan inicio no canónico de la traducción sea aún mayor.


Detalles Bibliográficos
2014
GENETICA
GENETICA COMPARATIVA
BIOLOGIA MOLECULAR
CAENORHABDITIS ELEGANS
SELENOCISTEINA
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/32144
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807522965140537344
author Otero Larre Borges, Lucia
author_facet Otero Larre Borges, Lucia
author_role author
bitstream.checksum.fl_str_mv 7f2e2c17ef6585de66da58d1bfa8b5e1
c160655373669e9e820be72396ec31f1
a006180e3f5b2ad0b88185d14284c0e0
1ad3fb9b6ddf205c397f9b25547bba95
4a9475c4c8d5289c7de669d847f6ae7e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/32144/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/32144/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/32144/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/32144/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/32144/1/TD+Otero+Larre+Borges%2C+Luc%C3%ADa.pdf
collection COLIBRI
dc.creator.advisor.none.fl_str_mv Salinas Grecco, GustavoMiranda Vizuete, Antonio (Co-Director de tesis)
dc.creator.none.fl_str_mv Otero Larre Borges, Lucia
dc.date.accessioned.none.fl_str_mv 2022-06-15T13:34:35Z
dc.date.available.none.fl_str_mv 2022-06-15T13:34:35Z
dc.date.issued.es.fl_str_mv 2014
dc.date.submitted.es.fl_str_mv 20220615
dc.description.abstract.none.fl_txt_mv La selenocisteína (Sec) es incorporada a la cadena polipeptídica mediante un mecanismo no canónico: una secuencia de incorporación de Sec (SECIS) presente en el ARNm de la selenoproteína reprograma al codón UGA para incorporar Sec. Si bien este mecanismo ha sido completamente elucidado en bacterias, en eucariotas aún restan aspectos por comprender. La proteína de unión al elemento SECIS (SBP2) media la incorporación de Sec, sin embargo los roles que cumplen sus dominios y el impacto de su deficiencia en la inserción de Sec no se conoce completamente. Por otra parte, existen genes que se han reportado como involucrados o presuntamente involucrados en la decodificación e incorporación de Sec cuyas funciones no han sido esclarecidas. Para estudiar algunos de estos aspectos, utilizamos Caenorhabditis elegans como modelo ya que se trata de un organismo eucariota simple que posee toda la maquinaria de incorporación de Sec a disposición de una única selenoproteína: la tiorredoxina reductasa citosólica (TRXR-1). Todas las SBP2 descritas hasta el inicio de esta tesis poseían un dominio de unión al ARN (RBD) y uno de incorporación de Sec (SID). Mediante análisis in silico identificamos la SBP2 de C. elegans y, sorprendentemente, encontramos que carece de SID y que consiste únicamente en un RBD. Generamos una estirpe mutante en sbp2 que resultó incapaz de incorporar Sec, demostrando así que este gen es esencial para este fin. El análisis de genomas de otros nematodos reveló que la ausencia de SID es característica del linaje y que el mantenimiento de la incorporación de Sec se encuentra ligado a la TRXR-1. Se deduce entonces que el mecanismo de incorporación de Sec en este filo difiere, al menos en parte, del ya reportado para otros eucariotas; SID podría ser completamente prescindible, u otra proteína, no identificada aún, podría suplir sus funciones. Encontramos también que los nematodos del clado Tylenchina han perdido la capacidad de incorporar Sec. Estos son los primeros animales no artrópodos que se reportan que perdieron esta característica; a nivel genético perdieron todos los genes involucrados en su decodificación, excepto SecP43, que se presume tendría un rol adicional a la metilación de una base del anticodón del ARNtSec y el transporte de complejos supramoleculares asociados a los ARNm de selenoproteínas. Mediante ensayos con una estirpe mutante en SecP43 encontramos que si bien no este gen no es esencial para la incorporación de Sec en condiciones óptimas de laboratorio, es necesario para la correcta expresión de TRXR-1 en condiciones desafiantes. 4 Análogamente, demostramos que R13A5.9 , un gen asociado a la incorporación de Sec, pero de función desconocida, es requerido para la incorporación de Sec en condiciones desafiantes. Así, es probable que R13A5.9, como SecP43, tenga funciones regulatorias en el metabolismo de selenio y/o la incorporación de Sec. Globalmente, nuestros resultados indican que C. elegans y el linaje nematodo proveen indicios claves para comprender el mecanismo de incorporación de Sec y la evolución de la utilización de Sec y de los genes asociados a su incorporación, así como de las selenoproteínas y los selenoproteomas. Finalmente nuestros estudios mostraron evidencia de inicio no canónico de la traducción en C. elegans , mecanismo que no había sido previamente descrito en este organismo modelo. Se identificaron dos genes (uno de ellos sbp2 ) cuya traducción no iniciaría en AUG sino en AUU. Se prevé que el número de transcriptos que tengan inicio no canónico de la traducción sea aún mayor.
dc.format.extent.es.fl_str_mv 138 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Otero Larre Borges, L. Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2014.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/32144
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar. FQ
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.other.es.fl_str_mv GENETICA
GENETICA COMPARATIVA
BIOLOGIA MOLECULAR
CAENORHABDITIS ELEGANS
SELENOCISTEINA
dc.title.none.fl_str_mv Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description La selenocisteína (Sec) es incorporada a la cadena polipeptídica mediante un mecanismo no canónico: una secuencia de incorporación de Sec (SECIS) presente en el ARNm de la selenoproteína reprograma al codón UGA para incorporar Sec. Si bien este mecanismo ha sido completamente elucidado en bacterias, en eucariotas aún restan aspectos por comprender. La proteína de unión al elemento SECIS (SBP2) media la incorporación de Sec, sin embargo los roles que cumplen sus dominios y el impacto de su deficiencia en la inserción de Sec no se conoce completamente. Por otra parte, existen genes que se han reportado como involucrados o presuntamente involucrados en la decodificación e incorporación de Sec cuyas funciones no han sido esclarecidas. Para estudiar algunos de estos aspectos, utilizamos Caenorhabditis elegans como modelo ya que se trata de un organismo eucariota simple que posee toda la maquinaria de incorporación de Sec a disposición de una única selenoproteína: la tiorredoxina reductasa citosólica (TRXR-1). Todas las SBP2 descritas hasta el inicio de esta tesis poseían un dominio de unión al ARN (RBD) y uno de incorporación de Sec (SID). Mediante análisis in silico identificamos la SBP2 de C. elegans y, sorprendentemente, encontramos que carece de SID y que consiste únicamente en un RBD. Generamos una estirpe mutante en sbp2 que resultó incapaz de incorporar Sec, demostrando así que este gen es esencial para este fin. El análisis de genomas de otros nematodos reveló que la ausencia de SID es característica del linaje y que el mantenimiento de la incorporación de Sec se encuentra ligado a la TRXR-1. Se deduce entonces que el mecanismo de incorporación de Sec en este filo difiere, al menos en parte, del ya reportado para otros eucariotas; SID podría ser completamente prescindible, u otra proteína, no identificada aún, podría suplir sus funciones. Encontramos también que los nematodos del clado Tylenchina han perdido la capacidad de incorporar Sec. Estos son los primeros animales no artrópodos que se reportan que perdieron esta característica; a nivel genético perdieron todos los genes involucrados en su decodificación, excepto SecP43, que se presume tendría un rol adicional a la metilación de una base del anticodón del ARNtSec y el transporte de complejos supramoleculares asociados a los ARNm de selenoproteínas. Mediante ensayos con una estirpe mutante en SecP43 encontramos que si bien no este gen no es esencial para la incorporación de Sec en condiciones óptimas de laboratorio, es necesario para la correcta expresión de TRXR-1 en condiciones desafiantes. 4 Análogamente, demostramos que R13A5.9 , un gen asociado a la incorporación de Sec, pero de función desconocida, es requerido para la incorporación de Sec en condiciones desafiantes. Así, es probable que R13A5.9, como SecP43, tenga funciones regulatorias en el metabolismo de selenio y/o la incorporación de Sec. Globalmente, nuestros resultados indican que C. elegans y el linaje nematodo proveen indicios claves para comprender el mecanismo de incorporación de Sec y la evolución de la utilización de Sec y de los genes asociados a su incorporación, así como de las selenoproteínas y los selenoproteomas. Finalmente nuestros estudios mostraron evidencia de inicio no canónico de la traducción en C. elegans , mecanismo que no había sido previamente descrito en este organismo modelo. Se identificaron dos genes (uno de ellos sbp2 ) cuya traducción no iniciaría en AUG sino en AUU. Se prevé que el número de transcriptos que tengan inicio no canónico de la traducción sea aún mayor.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_68b4df8ccf3c11f1a7d92a5259ade6b3
identifier_str_mv Otero Larre Borges, L. Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2014.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/32144
publishDate 2014
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling 2022-06-15T13:34:35Z2022-06-15T13:34:35Z201420220615Otero Larre Borges, L. Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2014.https://hdl.handle.net/20.500.12008/32144La selenocisteína (Sec) es incorporada a la cadena polipeptídica mediante un mecanismo no canónico: una secuencia de incorporación de Sec (SECIS) presente en el ARNm de la selenoproteína reprograma al codón UGA para incorporar Sec. Si bien este mecanismo ha sido completamente elucidado en bacterias, en eucariotas aún restan aspectos por comprender. La proteína de unión al elemento SECIS (SBP2) media la incorporación de Sec, sin embargo los roles que cumplen sus dominios y el impacto de su deficiencia en la inserción de Sec no se conoce completamente. Por otra parte, existen genes que se han reportado como involucrados o presuntamente involucrados en la decodificación e incorporación de Sec cuyas funciones no han sido esclarecidas. Para estudiar algunos de estos aspectos, utilizamos Caenorhabditis elegans como modelo ya que se trata de un organismo eucariota simple que posee toda la maquinaria de incorporación de Sec a disposición de una única selenoproteína: la tiorredoxina reductasa citosólica (TRXR-1). Todas las SBP2 descritas hasta el inicio de esta tesis poseían un dominio de unión al ARN (RBD) y uno de incorporación de Sec (SID). Mediante análisis in silico identificamos la SBP2 de C. elegans y, sorprendentemente, encontramos que carece de SID y que consiste únicamente en un RBD. Generamos una estirpe mutante en sbp2 que resultó incapaz de incorporar Sec, demostrando así que este gen es esencial para este fin. El análisis de genomas de otros nematodos reveló que la ausencia de SID es característica del linaje y que el mantenimiento de la incorporación de Sec se encuentra ligado a la TRXR-1. Se deduce entonces que el mecanismo de incorporación de Sec en este filo difiere, al menos en parte, del ya reportado para otros eucariotas; SID podría ser completamente prescindible, u otra proteína, no identificada aún, podría suplir sus funciones. Encontramos también que los nematodos del clado Tylenchina han perdido la capacidad de incorporar Sec. Estos son los primeros animales no artrópodos que se reportan que perdieron esta característica; a nivel genético perdieron todos los genes involucrados en su decodificación, excepto SecP43, que se presume tendría un rol adicional a la metilación de una base del anticodón del ARNtSec y el transporte de complejos supramoleculares asociados a los ARNm de selenoproteínas. Mediante ensayos con una estirpe mutante en SecP43 encontramos que si bien no este gen no es esencial para la incorporación de Sec en condiciones óptimas de laboratorio, es necesario para la correcta expresión de TRXR-1 en condiciones desafiantes. 4 Análogamente, demostramos que R13A5.9 , un gen asociado a la incorporación de Sec, pero de función desconocida, es requerido para la incorporación de Sec en condiciones desafiantes. Así, es probable que R13A5.9, como SecP43, tenga funciones regulatorias en el metabolismo de selenio y/o la incorporación de Sec. Globalmente, nuestros resultados indican que C. elegans y el linaje nematodo proveen indicios claves para comprender el mecanismo de incorporación de Sec y la evolución de la utilización de Sec y de los genes asociados a su incorporación, así como de las selenoproteínas y los selenoproteomas. Finalmente nuestros estudios mostraron evidencia de inicio no canónico de la traducción en C. elegans , mecanismo que no había sido previamente descrito en este organismo modelo. Se identificaron dos genes (uno de ellos sbp2 ) cuya traducción no iniciaría en AUG sino en AUU. Se prevé que el número de transcriptos que tengan inicio no canónico de la traducción sea aún mayor.Made available in DSpace on 2022-06-15T13:34:35Z (GMT). No. of bitstreams: 5 TD Otero Larre Borges, Lucía.pdf: 5099008 bytes, checksum: 4a9475c4c8d5289c7de669d847f6ae7e (MD5) license_text: 38518 bytes, checksum: c160655373669e9e820be72396ec31f1 (MD5) license_url: 50 bytes, checksum: a006180e3f5b2ad0b88185d14284c0e0 (MD5) license_rdf: 11336 bytes, checksum: 1ad3fb9b6ddf205c397f9b25547bba95 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2014138 p.application/pdfesspaUdelar. FQLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)GENETICAGENETICA COMPARATIVABIOLOGIA MOLECULARCAENORHABDITIS ELEGANSSELENOCISTEINAUso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínasTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaOtero Larre Borges, LuciaSalinas Grecco, GustavoMiranda Vizuete, Antonio (Co-Director de tesis)Universidad de la República (Uruguay). Facultad de QuímicaDoctor en QuímicaLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/32144/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream38518http://localhost:8080/xmlui/bitstream/20.500.12008/32144/2/license_textc160655373669e9e820be72396ec31f1MD52license_urlapplication/octet-stream50http://localhost:8080/xmlui/bitstream/20.500.12008/32144/3/license_urla006180e3f5b2ad0b88185d14284c0e0MD53license_rdfapplication/octet-stream11336http://localhost:8080/xmlui/bitstream/20.500.12008/32144/4/license_rdf1ad3fb9b6ddf205c397f9b25547bba95MD54ORIGINALTD Otero Larre Borges, Lucía.pdfapplication/pdf5099008http://localhost:8080/xmlui/bitstream/20.500.12008/32144/1/TD+Otero+Larre+Borges%2C+Luc%C3%ADa.pdf4a9475c4c8d5289c7de669d847f6ae7eMD5120.500.12008/321442023-11-21 13:16:18.241oai:colibri.udelar.edu.uy:20.500.12008/32144VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:34:42.250363COLIBRI - Universidad de la Repúblicafalse
spellingShingle Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas
Otero Larre Borges, Lucia
GENETICA
GENETICA COMPARATIVA
BIOLOGIA MOLECULAR
CAENORHABDITIS ELEGANS
SELENOCISTEINA
status_str acceptedVersion
title Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas
title_full Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas
title_fullStr Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas
title_full_unstemmed Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas
title_short Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas
title_sort Uso del modelo experimental caenorhabditis elegans para el estudio de selenocisteína en proteínas
topic GENETICA
GENETICA COMPARATIVA
BIOLOGIA MOLECULAR
CAENORHABDITIS ELEGANS
SELENOCISTEINA
url https://hdl.handle.net/20.500.12008/32144