Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel

Prescribing the curvature of leaves of laminations: revisiting a theorem by Candel

Álvarez, Sebastien - Smith, Graham

Resumen:

In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger–Gromov topology on the space of complete pointed riemannian manifolds.


Dans cet article, nous revenons sur un célèbre théorème de Candel que nous renforçons en prouvant qu’étant donnée une lamination compacte par surfaces hyperboliques, toute fonction négative lisse dans les feuilles et transversalement continue est la fonction courbure d’une unique métrique laminée dans la classe conforme correspondante. Nous interprétons ce fait comme la continuité de solutions de certaines EDP elliptiques dans une topologie, dite de Cheeger–Gromov, sur l’espace des variétés riemanniennes complètes pointées.


Detalles Bibliográficos
2021
ANII: FCE_3_2018_1_148740
Lamination by hyperbolic surfaces
Prescrired curvature
Francés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/35004
Acceso abierto
Licencia Creative Commons Atribución - Sin Derivadas (CC - By-ND 4.0)
_version_ 1807522794654662656
author Álvarez, Sebastien
author2 Smith, Graham
author2_role author
author_facet Álvarez, Sebastien
Smith, Graham
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
2e02f7f19671f565f98e3666cf2e95ae
348b093951d220bc1041fb8a3d987ca6
c4a4e04df5706f535a6855c85be577a7
72174d5b42768c75867001e8db9a1cdd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/35004/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/35004/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/35004/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/35004/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/35004/1/10.5802_aif.3476.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Álvarez Sebastien, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.
Smith Graham, UFRJ
dc.creator.none.fl_str_mv Álvarez, Sebastien
Smith, Graham
dc.date.accessioned.none.fl_str_mv 2022-11-24T15:48:31Z
dc.date.available.none.fl_str_mv 2022-11-24T15:48:31Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger–Gromov topology on the space of complete pointed riemannian manifolds.
Dans cet article, nous revenons sur un célèbre théorème de Candel que nous renforçons en prouvant qu’étant donnée une lamination compacte par surfaces hyperboliques, toute fonction négative lisse dans les feuilles et transversalement continue est la fonction courbure d’une unique métrique laminée dans la classe conforme correspondante. Nous interprétons ce fait comme la continuité de solutions de certaines EDP elliptiques dans une topologie, dite de Cheeger–Gromov, sur l’espace des variétés riemanniennes complètes pointées.
dc.description.sponsorship.none.fl_txt_mv ANII: FCE_3_2018_1_148740
dc.format.extent.es.fl_str_mv 46 h
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Álvarez, S y Smith, G. "Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel". Annales de l'Institut Fourier. [en línea] 2021, 71(6): 2549-2593. 46 h. DOI: 10.5802/aif.3476
dc.identifier.doi.none.fl_str_mv 10.5802/aif.3476
dc.identifier.issn.none.fl_str_mv 1777-5310
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/35004
dc.language.iso.none.fl_str_mv fr
fra
dc.publisher.es.fl_str_mv Institut Fourier
dc.relation.ispartof.es.fl_str_mv Annales de l'Institut Fourier, 2021, 71(6): 2549-2593
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - Sin Derivadas (CC - By-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Lamination by hyperbolic surfaces
Prescrired curvature
dc.title.none.fl_str_mv Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel
Prescribing the curvature of leaves of laminations: revisiting a theorem by Candel
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger–Gromov topology on the space of complete pointed riemannian manifolds.
eu_rights_str_mv openAccess
format article
id COLIBRI_678f8ee20f18cd533d46d46b63ff5b57
identifier_str_mv Álvarez, S y Smith, G. "Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel". Annales de l'Institut Fourier. [en línea] 2021, 71(6): 2549-2593. 46 h. DOI: 10.5802/aif.3476
1777-5310
10.5802/aif.3476
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language fra
language_invalid_str_mv fr
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/35004
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - Sin Derivadas (CC - By-ND 4.0)
spelling Álvarez Sebastien, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Smith Graham, UFRJ2022-11-24T15:48:31Z2022-11-24T15:48:31Z2021Álvarez, S y Smith, G. "Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel". Annales de l'Institut Fourier. [en línea] 2021, 71(6): 2549-2593. 46 h. DOI: 10.5802/aif.34761777-5310https://hdl.handle.net/20.500.12008/3500410.5802/aif.3476In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger–Gromov topology on the space of complete pointed riemannian manifolds.Dans cet article, nous revenons sur un célèbre théorème de Candel que nous renforçons en prouvant qu’étant donnée une lamination compacte par surfaces hyperboliques, toute fonction négative lisse dans les feuilles et transversalement continue est la fonction courbure d’une unique métrique laminée dans la classe conforme correspondante. Nous interprétons ce fait comme la continuité de solutions de certaines EDP elliptiques dans une topologie, dite de Cheeger–Gromov, sur l’espace des variétés riemanniennes complètes pointées.Submitted by Faget Cecilia (lfaget@fcien.edu.uy) on 2022-11-23T12:57:24Z No. of bitstreams: 2 license_rdf: 21268 bytes, checksum: c4a4e04df5706f535a6855c85be577a7 (MD5) 10.5802_aif.3476.pdf: 1535548 bytes, checksum: 72174d5b42768c75867001e8db9a1cdd (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2022-11-24T11:54:42Z (GMT) No. of bitstreams: 2 license_rdf: 21268 bytes, checksum: c4a4e04df5706f535a6855c85be577a7 (MD5) 10.5802_aif.3476.pdf: 1535548 bytes, checksum: 72174d5b42768c75867001e8db9a1cdd (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-11-24T15:48:31Z (GMT). No. of bitstreams: 2 license_rdf: 21268 bytes, checksum: c4a4e04df5706f535a6855c85be577a7 (MD5) 10.5802_aif.3476.pdf: 1535548 bytes, checksum: 72174d5b42768c75867001e8db9a1cdd (MD5) Previous issue date: 2021ANII: FCE_3_2018_1_14874046 happlication/pdffrfraInstitut FourierAnnales de l'Institut Fourier, 2021, 71(6): 2549-2593Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - Sin Derivadas (CC - By-ND 4.0)Lamination by hyperbolic surfacesPrescrired curvaturePrescription de courbure des feuilles des laminations : retour sur un théorème de CandelPrescribing the curvature of leaves of laminations: revisiting a theorem by CandelArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaÁlvarez, SebastienSmith, GrahamLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/35004/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-847http://localhost:8080/xmlui/bitstream/20.500.12008/35004/2/license_url2e02f7f19671f565f98e3666cf2e95aeMD52license_textlicense_texttext/html; charset=utf-838258http://localhost:8080/xmlui/bitstream/20.500.12008/35004/3/license_text348b093951d220bc1041fb8a3d987ca6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-821268http://localhost:8080/xmlui/bitstream/20.500.12008/35004/4/license_rdfc4a4e04df5706f535a6855c85be577a7MD54ORIGINAL10.5802_aif.3476.pdf10.5802_aif.3476.pdfapplication/pdf1535548http://localhost:8080/xmlui/bitstream/20.500.12008/35004/1/10.5802_aif.3476.pdf72174d5b42768c75867001e8db9a1cddMD5120.500.12008/350042022-11-24 12:48:31.076oai:colibri.udelar.edu.uy:20.500.12008/35004VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:28:52.296690COLIBRI - Universidad de la Repúblicafalse
spellingShingle Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel
Álvarez, Sebastien
Lamination by hyperbolic surfaces
Prescrired curvature
status_str publishedVersion
title Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel
title_full Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel
title_fullStr Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel
title_full_unstemmed Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel
title_short Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel
title_sort Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel
topic Lamination by hyperbolic surfaces
Prescrired curvature
url https://hdl.handle.net/20.500.12008/35004