Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel

Prescribing the curvature of leaves of laminations: revisiting a theorem by Candel

Álvarez, Sebastien - Smith, Graham

Resumen:

In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger–Gromov topology on the space of complete pointed riemannian manifolds.


Dans cet article, nous revenons sur un célèbre théorème de Candel que nous renforçons en prouvant qu’étant donnée une lamination compacte par surfaces hyperboliques, toute fonction négative lisse dans les feuilles et transversalement continue est la fonction courbure d’une unique métrique laminée dans la classe conforme correspondante. Nous interprétons ce fait comme la continuité de solutions de certaines EDP elliptiques dans une topologie, dite de Cheeger–Gromov, sur l’espace des variétés riemanniennes complètes pointées.


Detalles Bibliográficos
2021
ANII: FCE_3_2018_1_148740
Lamination by hyperbolic surfaces
Prescrired curvature
Francés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/35004
Acceso abierto
Licencia Creative Commons Atribución - Sin Derivadas (CC - By-ND 4.0)
Resumen:
Sumario:In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger–Gromov topology on the space of complete pointed riemannian manifolds.