Robust and unsupervised perceptual grouping of curves of dots
Resumen:
The Gestalt school of psychology proposed the existence of a short list of grouping laws governing visual perception. Among them, the law of good continuation can be stated as All else being equal, elements that can be seen as smooth continuations of each other tend to be grouped together [6] (Fig. 2). In the computational domain, attention to the Gestalt laws has been given since the early days of computer vision. D. Lowe was among the first to state the importance of incorporating the Gestalt principles of co-linearity, co-curvilinearity and simplicity for perceptual grouping algorithms [5]. Various computational formalizations of the good continuation principle have been proposed ever since, most notably the tensor voting approach [2, 3]. In this work1, we propose a new model and algorithm for the perceptual grouping by good continuation using a simple model that favors local symmetries, and with a detection control based on the non-accidentalness principle. This allows the method to be general in the sense that it can capture smooth curves of any shape and scale, and is robust to outliers and noise. It is also unsupervised because detections are given by their statistical significance, which requires only a single parameter, namely the number of false detections that would be allowed in an image of random noise. The proposed algorithm consists of two main steps: building candidate chains of points, and validating them. Candidate chains of points are built by considering triplets of points formed by joining nearest neighbors. Once valid triplets have been obtained, a graph representation is produced where each node corresponds to a triplet. A classic path finding algorithm is run on this graph to obtain paths between all pairs of triplets. Finally, the paths found are validated as non-accidental or rejected using thresholds obtained with the a contrario approach [1].
2016 | |
Procesamiento de Señales | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/42727 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522941063135232 |
---|---|
author | Lezama, José |
author2 | Randall, Gregory Morel, Jean-Michel Grompone von Gioi, Rafael |
author2_role | author author author |
author_facet | Lezama, José Randall, Gregory Morel, Jean-Michel Grompone von Gioi, Rafael |
author_role | author |
bitstream.checksum.fl_str_mv | 528b6a3c8c7d0c6e28129d576e989607 9833653f73f7853880c94a6fead477b1 4afdbb8c545fd630ea7db775da747b2f 9da0b6dfac957114c6a7714714b86306 a840612c508e7760a41b8ad82b036565 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/42727/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/42727/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/42727/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/42727/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/42727/1/LRMG16.pdf |
collection | COLIBRI |
dc.creator.none.fl_str_mv | Lezama, José Randall, Gregory Morel, Jean-Michel Grompone von Gioi, Rafael |
dc.date.accessioned.none.fl_str_mv | 2024-02-26T19:52:48Z |
dc.date.available.none.fl_str_mv | 2024-02-26T19:52:48Z |
dc.date.issued.es.fl_str_mv | 2016 |
dc.date.submitted.es.fl_str_mv | 20240223 |
dc.description.abstract.none.fl_txt_mv | The Gestalt school of psychology proposed the existence of a short list of grouping laws governing visual perception. Among them, the law of good continuation can be stated as All else being equal, elements that can be seen as smooth continuations of each other tend to be grouped together [6] (Fig. 2). In the computational domain, attention to the Gestalt laws has been given since the early days of computer vision. D. Lowe was among the first to state the importance of incorporating the Gestalt principles of co-linearity, co-curvilinearity and simplicity for perceptual grouping algorithms [5]. Various computational formalizations of the good continuation principle have been proposed ever since, most notably the tensor voting approach [2, 3]. In this work1, we propose a new model and algorithm for the perceptual grouping by good continuation using a simple model that favors local symmetries, and with a detection control based on the non-accidentalness principle. This allows the method to be general in the sense that it can capture smooth curves of any shape and scale, and is robust to outliers and noise. It is also unsupervised because detections are given by their statistical significance, which requires only a single parameter, namely the number of false detections that would be allowed in an image of random noise. The proposed algorithm consists of two main steps: building candidate chains of points, and validating them. Candidate chains of points are built by considering triplets of points formed by joining nearest neighbors. Once valid triplets have been obtained, a graph representation is produced where each node corresponds to a triplet. A classic path finding algorithm is run on this graph to obtain paths between all pairs of triplets. Finally, the paths found are validated as non-accidental or rejected using thresholds obtained with the a contrario approach [1]. |
dc.identifier.citation.es.fl_str_mv | Lezama, J, Randall, G, Morel, J-M, Grompone von Gioi, R. "Robust and unsupervised perceptual grouping of curves of dots" 10th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision: The Role of Feedback in Recognition and Motion Perception, Las Vegas, USA, 26 jun., 2016. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/42727 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | IEEE |
dc.relation.ispartof.es.fl_str_mv | 10th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision: The Role of Feedback in Recognition and Motion Perception, Las Vegas, USA, 26 jun., 2016 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.other.es.fl_str_mv | Procesamiento de Señales |
dc.title.none.fl_str_mv | Robust and unsupervised perceptual grouping of curves of dots |
dc.type.es.fl_str_mv | Ponencia |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | The Gestalt school of psychology proposed the existence of a short list of grouping laws governing visual perception. Among them, the law of good continuation can be stated as All else being equal, elements that can be seen as smooth continuations of each other tend to be grouped together [6] (Fig. 2). In the computational domain, attention to the Gestalt laws has been given since the early days of computer vision. D. Lowe was among the first to state the importance of incorporating the Gestalt principles of co-linearity, co-curvilinearity and simplicity for perceptual grouping algorithms [5]. Various computational formalizations of the good continuation principle have been proposed ever since, most notably the tensor voting approach [2, 3]. In this work1, we propose a new model and algorithm for the perceptual grouping by good continuation using a simple model that favors local symmetries, and with a detection control based on the non-accidentalness principle. This allows the method to be general in the sense that it can capture smooth curves of any shape and scale, and is robust to outliers and noise. It is also unsupervised because detections are given by their statistical significance, which requires only a single parameter, namely the number of false detections that would be allowed in an image of random noise. The proposed algorithm consists of two main steps: building candidate chains of points, and validating them. Candidate chains of points are built by considering triplets of points formed by joining nearest neighbors. Once valid triplets have been obtained, a graph representation is produced where each node corresponds to a triplet. A classic path finding algorithm is run on this graph to obtain paths between all pairs of triplets. Finally, the paths found are validated as non-accidental or rejected using thresholds obtained with the a contrario approach [1]. |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_6735427781240c64b5f3be8277aae618 |
identifier_str_mv | Lezama, J, Randall, G, Morel, J-M, Grompone von Gioi, R. "Robust and unsupervised perceptual grouping of curves of dots" 10th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision: The Role of Feedback in Recognition and Motion Perception, Las Vegas, USA, 26 jun., 2016. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/42727 |
publishDate | 2016 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | 2024-02-26T19:52:48Z2024-02-26T19:52:48Z201620240223Lezama, J, Randall, G, Morel, J-M, Grompone von Gioi, R. "Robust and unsupervised perceptual grouping of curves of dots" 10th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision: The Role of Feedback in Recognition and Motion Perception, Las Vegas, USA, 26 jun., 2016.https://hdl.handle.net/20.500.12008/42727The Gestalt school of psychology proposed the existence of a short list of grouping laws governing visual perception. Among them, the law of good continuation can be stated as All else being equal, elements that can be seen as smooth continuations of each other tend to be grouped together [6] (Fig. 2). In the computational domain, attention to the Gestalt laws has been given since the early days of computer vision. D. Lowe was among the first to state the importance of incorporating the Gestalt principles of co-linearity, co-curvilinearity and simplicity for perceptual grouping algorithms [5]. Various computational formalizations of the good continuation principle have been proposed ever since, most notably the tensor voting approach [2, 3]. In this work1, we propose a new model and algorithm for the perceptual grouping by good continuation using a simple model that favors local symmetries, and with a detection control based on the non-accidentalness principle. This allows the method to be general in the sense that it can capture smooth curves of any shape and scale, and is robust to outliers and noise. It is also unsupervised because detections are given by their statistical significance, which requires only a single parameter, namely the number of false detections that would be allowed in an image of random noise. The proposed algorithm consists of two main steps: building candidate chains of points, and validating them. Candidate chains of points are built by considering triplets of points formed by joining nearest neighbors. Once valid triplets have been obtained, a graph representation is produced where each node corresponds to a triplet. A classic path finding algorithm is run on this graph to obtain paths between all pairs of triplets. Finally, the paths found are validated as non-accidental or rejected using thresholds obtained with the a contrario approach [1].Made available in DSpace on 2024-02-26T19:52:48Z (GMT). No. of bitstreams: 5 LRMG16.pdf: 341121 bytes, checksum: a840612c508e7760a41b8ad82b036565 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2016enengIEEE10th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision: The Role of Feedback in Recognition and Motion Perception, Las Vegas, USA, 26 jun., 2016Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Procesamiento de SeñalesRobust and unsupervised perceptual grouping of curves of dotsPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaLezama, JoséRandall, GregoryMorel, Jean-MichelGrompone von Gioi, RafaelProcesamiento de SeñalesTratamiento de ImágenesLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/42727/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/42727/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/42727/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/42727/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALLRMG16.pdfapplication/pdf341121http://localhost:8080/xmlui/bitstream/20.500.12008/42727/1/LRMG16.pdfa840612c508e7760a41b8ad82b036565MD5120.500.12008/427272024-07-24 17:25:49.121oai:colibri.udelar.edu.uy:20.500.12008/42727VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:47.772645COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Robust and unsupervised perceptual grouping of curves of dots Lezama, José Procesamiento de Señales |
status_str | publishedVersion |
title | Robust and unsupervised perceptual grouping of curves of dots |
title_full | Robust and unsupervised perceptual grouping of curves of dots |
title_fullStr | Robust and unsupervised perceptual grouping of curves of dots |
title_full_unstemmed | Robust and unsupervised perceptual grouping of curves of dots |
title_short | Robust and unsupervised perceptual grouping of curves of dots |
title_sort | Robust and unsupervised perceptual grouping of curves of dots |
topic | Procesamiento de Señales |
url | https://hdl.handle.net/20.500.12008/42727 |