A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system

Flieller Alfonso, Guillermo Francisco - Solari, Alfredo - Bruno Cotelo, Rafael - Chaer, Ruben

Resumen:

In systems with a high penetration of wind power generation, the precision of the forecasts is a critical input for the electricity dispatch planning. In this paper, we present the methodology that has been used to implement a complete update of the wind power forecast model in Uruguay. The new model increases the precision of the forecasts both in low and high power scenarios. It allows to perform a more efficient short-term electricity dispatch, improving the resource valuation, the inter-systems energy exchanges and the prevision of the wholesale electricity market spot price. According to the simulations performed, the new model increase the precision of wind power forecasts between 7% and 32%. The model is on its production phase and their results can be accessed through pronos.adme.com.uy/svg and latorrex.adme.com.uy/vates.


Detalles Bibliográficos
2023
Training
Adaptation models
Uncertainty
Wind speed
Wind power generation
Predictive models
Wind farms
Renewable energy systems
Forecasting
Wind energy
Neural networks
Wind turbine power curve
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/42459
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522940157165568
author Flieller Alfonso, Guillermo Francisco
author2 Solari, Alfredo
Bruno Cotelo, Rafael
Chaer, Ruben
author2_role author
author
author
author_facet Flieller Alfonso, Guillermo Francisco
Solari, Alfredo
Bruno Cotelo, Rafael
Chaer, Ruben
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
b091a3d46d485fa7ce38d3b0b6ab27b1
489f03e71d39068f329bdec8798bce58
a87ce5008bb80b8405f017b6212769fc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/42459/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/42459/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/42459/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/42459/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/42459/1/FSBC23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Flieller Alfonso Guillermo Francisco, ADME : Administración del Mercado Eléctrico, Uruguay.
Solari Alfredo, ADME : Administración del Mercado Eléctrico, Uruguay.
Bruno Cotelo Rafael, ADME : Administración del Mercado Eléctrico, Uruguay.
Chaer Ruben, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.coverage.spatial.es.fl_str_mv Uruguay
dc.creator.none.fl_str_mv Flieller Alfonso, Guillermo Francisco
Solari, Alfredo
Bruno Cotelo, Rafael
Chaer, Ruben
dc.date.accessioned.none.fl_str_mv 2024-02-15T14:45:13Z
dc.date.available.none.fl_str_mv 2024-02-15T14:45:13Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv In systems with a high penetration of wind power generation, the precision of the forecasts is a critical input for the electricity dispatch planning. In this paper, we present the methodology that has been used to implement a complete update of the wind power forecast model in Uruguay. The new model increases the precision of the forecasts both in low and high power scenarios. It allows to perform a more efficient short-term electricity dispatch, improving the resource valuation, the inter-systems energy exchanges and the prevision of the wholesale electricity market spot price. According to the simulations performed, the new model increase the precision of wind power forecasts between 7% and 32%. The model is on its production phase and their results can be accessed through pronos.adme.com.uy/svg and latorrex.adme.com.uy/vates.
dc.format.extent.es.fl_str_mv 5 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Flieller Alfonso, G., Solari, A., Bruno Cotelo, R. y otros. A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system [en línea]. EN: 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 16-17 nov. 2023, pp. 1-5. DOI: 10.1109/ICECET58911.2023.10389491.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/42459
dc.language.iso.none.fl_str_mv en
eng
dc.relation.ispartof.es.fl_str_mv 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 16-17 nov. 2023, pp. 1-5.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Training
Adaptation models
Uncertainty
Wind speed
Wind power generation
Predictive models
Wind farms
Renewable energy systems
Forecasting
Wind energy
Neural networks
Wind turbine power curve
dc.title.none.fl_str_mv A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system
dc.type.es.fl_str_mv Ponencia
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description In systems with a high penetration of wind power generation, the precision of the forecasts is a critical input for the electricity dispatch planning. In this paper, we present the methodology that has been used to implement a complete update of the wind power forecast model in Uruguay. The new model increases the precision of the forecasts both in low and high power scenarios. It allows to perform a more efficient short-term electricity dispatch, improving the resource valuation, the inter-systems energy exchanges and the prevision of the wholesale electricity market spot price. According to the simulations performed, the new model increase the precision of wind power forecasts between 7% and 32%. The model is on its production phase and their results can be accessed through pronos.adme.com.uy/svg and latorrex.adme.com.uy/vates.
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_642c2170f4e23ae333646db33cf09956
identifier_str_mv Flieller Alfonso, G., Solari, A., Bruno Cotelo, R. y otros. A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system [en línea]. EN: 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 16-17 nov. 2023, pp. 1-5. DOI: 10.1109/ICECET58911.2023.10389491.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/42459
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Flieller Alfonso Guillermo Francisco, ADME : Administración del Mercado Eléctrico, Uruguay.Solari Alfredo, ADME : Administración del Mercado Eléctrico, Uruguay.Bruno Cotelo Rafael, ADME : Administración del Mercado Eléctrico, Uruguay.Chaer Ruben, Universidad de la República (Uruguay). Facultad de Ingeniería.Uruguay2024-02-15T14:45:13Z2024-02-15T14:45:13Z2023Flieller Alfonso, G., Solari, A., Bruno Cotelo, R. y otros. A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system [en línea]. EN: 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 16-17 nov. 2023, pp. 1-5. DOI: 10.1109/ICECET58911.2023.10389491.https://hdl.handle.net/20.500.12008/42459In systems with a high penetration of wind power generation, the precision of the forecasts is a critical input for the electricity dispatch planning. In this paper, we present the methodology that has been used to implement a complete update of the wind power forecast model in Uruguay. The new model increases the precision of the forecasts both in low and high power scenarios. It allows to perform a more efficient short-term electricity dispatch, improving the resource valuation, the inter-systems energy exchanges and the prevision of the wholesale electricity market spot price. According to the simulations performed, the new model increase the precision of wind power forecasts between 7% and 32%. The model is on its production phase and their results can be accessed through pronos.adme.com.uy/svg and latorrex.adme.com.uy/vates.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2024-01-23T12:36:38Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) FSBC23.pdf: 1669981 bytes, checksum: a87ce5008bb80b8405f017b6212769fc (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2024-02-14T18:41:08Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) FSBC23.pdf: 1669981 bytes, checksum: a87ce5008bb80b8405f017b6212769fc (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-02-15T14:45:13Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) FSBC23.pdf: 1669981 bytes, checksum: a87ce5008bb80b8405f017b6212769fc (MD5) Previous issue date: 20235 p.application/pdfeneng2023 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town, South Africa, 16-17 nov. 2023, pp. 1-5.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)TrainingAdaptation modelsUncertaintyWind speedWind power generationPredictive modelsWind farmsRenewable energy systemsForecastingWind energyNeural networksWind turbine power curveA novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity systemPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaFlieller Alfonso, Guillermo FranciscoSolari, AlfredoBruno Cotelo, RafaelChaer, RubenLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/42459/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/42459/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822570http://localhost:8080/xmlui/bitstream/20.500.12008/42459/3/license_textb091a3d46d485fa7ce38d3b0b6ab27b1MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/42459/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALFSBC23.pdfFSBC23.pdfapplication/pdf1669981http://localhost:8080/xmlui/bitstream/20.500.12008/42459/1/FSBC23.pdfa87ce5008bb80b8405f017b6212769fcMD5120.500.12008/424592024-02-15 11:45:13.462oai:colibri.udelar.edu.uy:20.500.12008/42459VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:43.606885COLIBRI - Universidad de la Repúblicafalse
spellingShingle A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system
Flieller Alfonso, Guillermo Francisco
Training
Adaptation models
Uncertainty
Wind speed
Wind power generation
Predictive models
Wind farms
Renewable energy systems
Forecasting
Wind energy
Neural networks
Wind turbine power curve
status_str publishedVersion
title A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system
title_full A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system
title_fullStr A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system
title_full_unstemmed A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system
title_short A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system
title_sort A novel strategy for wind power forecast through neural networks : Applications to the uruguayan electricity system
topic Training
Adaptation models
Uncertainty
Wind speed
Wind power generation
Predictive models
Wind farms
Renewable energy systems
Forecasting
Wind energy
Neural networks
Wind turbine power curve
url https://hdl.handle.net/20.500.12008/42459