Compairing human and machine detection thresholds
Resumen:
The mathematical theory of a contrario detection formalizes the non-accidentalness principle and attempts to predict ideal perception thresholds. Thus, it is natural to reconsider from a computational perspective, classic and new psychophysical experiments evaluating the human perception performance. To this aim, we chose the psychophysical experiments by Wagemans et al. where subjects are presented with Gabor-rendered outlines of real world objects. In these experiments, orientation jitter was added to the elements with the aim of determining its effect on human object detection performance. Using the a contrario theory, the human detection thresholds can be compared rationally to the algorithmic ones. To allow a broader experimentation, we built an online web facility where users can perform object detection experiments, and compare their detection curves to the ones predicted analytically by the computational model.
2012 | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41129 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
On computational Gestalt detection thresholds
Autor(es):: Grompone von Gioi, Rafael
Fecha de publicación:: (2009) -
Unsupervised thresholds for shape matching
Autor(es):: Musé, Pablo
Fecha de publicación:: (2003) -
Automatic thresholds for shape recognition
Autor(es):: Musé, Pablo
Fecha de publicación:: (2003) -
Web application attacks detection using machine learning techniques
Autor(es):: Betarte, Gustavo
Fecha de publicación:: (2018) -
Enhancing web application attack detection using machine learning
Autor(es):: Martínez, Rodrigo
Fecha de publicación:: (2018)