Polyps flagging in virtual colonoscopy
Resumen:
Computer tomographic colonography, combined with computer-aided detection, is a promising emerging technique for colonic polyp analysis. We present a complete pipeline for polyp detection, starting with a simple colon segmentation technique that enhances polyps, followed by an adaptive-scale candidate polyp delineation and classification based on new texture and geometric features that consider both the information in the candidate polyp and its immediate surrounding area. The proposed system is tested with ground truth data, including challenging flat and small polyps. For polyps larger than 6mm in size we achieve 100% sensitivity with just 0.9 false positives per case, and for polyps larger than 3mm in size we achieve 93% sensitivity with 2.8 false positives per case
2013 | |
Texture feature Shape index Virtual colonoscopy Optical colonoscopy Polyp detection Procesamiento de Señales |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41763 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
A complete system for candidate polyps detection in virtual colonoscopy
Autor(es):: Sapiro, Guillermo
Fecha de publicación:: (2014) -
Quantitative comparison between single-photon emission computed tomography and positron emission tomography imaging of lung ventilation with 99mTc-technegas and 68Ga‑gallgas in patients with chronic obstructive pulmonary disease: a pilot study
Autor(es):: Cuña Rodríguez, Enrique Gustavo
Fecha de publicación:: (2019) -
Segmentation and polyp detection in virtual colonoscopy : a complete system for computer aided diagnosis
Autor(es):: Fiori, Marcelo
Fecha de publicación:: (2011) -
Deep video deblurring for hand-held cameras
Autor(es):: Su, Shuochen
Fecha de publicación:: (2017) -
Ultrasound image segmentation with shape priors : application to automatic cattle rib-eye area estimation
Autor(es):: Arias, Pablo
Fecha de publicación:: (2007)