Preclinical studies and drug combination of low-cost molecules for Chagas disease

Aguilera, Elena - Sánchez, Carina - Cruces, María Eugenia - Dávila Saralegui, Belén - Minini Rivas, Lucía - Mosquillo, María Florencia - Pérez-Díaz, Leticia - Serna, Elva - Torres, Susana - Schini, Alicia - Sanabria, Luis - Vera de Bilbao, N.I. - Yaluff, Gloria - Zolessi, Flavio R. - Ceilas, Luis Fabian - Cerecetto, Hugo - Álvarez, Guzmán

Resumen:

Chagas disease is caused by the protozoan Trypanosoma cruzi (T. cruzi). It remains the major parasitic disease in Latin America and is spreading worldwide, affecting over 10 million people. Hundreds of new compounds with trypanosomicidal action have been identified from different sources such as synthetic or natural molecules, but they have been deficient in several stages of drug development (toxicology, scaling-up, and pharmacokinetics). Previously, we described a series of compounds with simple structures, low cost, and environmentally friendly production with potent trypanosomicidal activity in vitro and in vivo. These molecules are from three different families: thiazolidenehydrazines, diarylideneketones, and steroids. From this collection, we explored their capacity to inhibit the triosephosphate isomerase and cruzipain of T. cruzi. Then, the mechanism of action was explored using NMR metabolomics and computational molecular dynamics. Moreover, the mechanism of death was studied by flow cytometry. Consequently, five compounds, 314, 793, 1018, 1019, and 1260, were pre-clinically studied and their pharmacologic profiles indicated low unspecific toxicity. Interestingly, synergetic effects of diarylideneketones 793 plus 1018 and 793 plus 1019 were evidenced in vitro and in vivo. In vivo, the combination of compounds 793 plus 1018 induced a reduction of more than 90% of the peak of parasitemia in the acute murine model of Chagas disease.


Detalles Bibliográficos
2023
ANII: POS_NAC_2016_1_129945
Chagas disease
Pre-clinically studied
Drug combination
RMN metabolomics
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/43097
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
Resumen:
Sumario:Chagas disease is caused by the protozoan Trypanosoma cruzi (T. cruzi). It remains the major parasitic disease in Latin America and is spreading worldwide, affecting over 10 million people. Hundreds of new compounds with trypanosomicidal action have been identified from different sources such as synthetic or natural molecules, but they have been deficient in several stages of drug development (toxicology, scaling-up, and pharmacokinetics). Previously, we described a series of compounds with simple structures, low cost, and environmentally friendly production with potent trypanosomicidal activity in vitro and in vivo. These molecules are from three different families: thiazolidenehydrazines, diarylideneketones, and steroids. From this collection, we explored their capacity to inhibit the triosephosphate isomerase and cruzipain of T. cruzi. Then, the mechanism of action was explored using NMR metabolomics and computational molecular dynamics. Moreover, the mechanism of death was studied by flow cytometry. Consequently, five compounds, 314, 793, 1018, 1019, and 1260, were pre-clinically studied and their pharmacologic profiles indicated low unspecific toxicity. Interestingly, synergetic effects of diarylideneketones 793 plus 1018 and 793 plus 1019 were evidenced in vitro and in vivo. In vivo, the combination of compounds 793 plus 1018 induced a reduction of more than 90% of the peak of parasitemia in the acute murine model of Chagas disease.