Network reliability analysis and intractability of counting diameter crystal graphs

Canale, Eduardo - Robledo Amoza, Franco Rafael - Romero, Pablo - Rubino, Gerardo

Resumen:

Consider a stochastic network, where nodes are perfect but links fail independently, ruled by failure probabilities. Additionally, we are given distinguished nodes, called terminals, and a positive integer, called diameter. The event under study is to connect terminals by paths not longer than the given diameter. The probability of this event is called diameter-constrained reliability (DCR, for short). Since the DCR subsumes connectedness probability of random graphs, its computation belongs to the class of NP-Hard problems. The computational complexity for DCR is known for fixed values of the number of terminals k n and diameter d, being n the number of nodes in the network. The contributions of this article are two-fold. First, we extend the computational complexity of the DCR when the terminal size is a function of the number of nodes, this is, when k = k(n). Second, we state counting diameter-critical graphs belongs to the class of NP-Hard problems.


Detalles Bibliográficos
2016
Computational complexity
Network reliability
Diameter-critical graphs
Inglés
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/9204
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807522945483931648
author Canale, Eduardo
author2 Robledo Amoza, Franco Rafael
Romero, Pablo
Rubino, Gerardo
author2_role author
author
author
author_facet Canale, Eduardo
Robledo Amoza, Franco Rafael
Romero, Pablo
Rubino, Gerardo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
a1b57aa3fdc83cc93455d1925244af12
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/9204/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/9204/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/9204/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/9204/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/9204/1/TR1605.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Canale Eduardo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Robledo Amoza Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.
Romero Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Rubino Gerardo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Canale, Eduardo
Robledo Amoza, Franco Rafael
Romero, Pablo
Rubino, Gerardo
dc.date.accessioned.none.fl_str_mv 2017-07-21T17:31:55Z
dc.date.available.none.fl_str_mv 2017-07-21T17:31:55Z
dc.date.issued.none.fl_str_mv 2016
dc.description.abstract.none.fl_txt_mv Consider a stochastic network, where nodes are perfect but links fail independently, ruled by failure probabilities. Additionally, we are given distinguished nodes, called terminals, and a positive integer, called diameter. The event under study is to connect terminals by paths not longer than the given diameter. The probability of this event is called diameter-constrained reliability (DCR, for short). Since the DCR subsumes connectedness probability of random graphs, its computation belongs to the class of NP-Hard problems. The computational complexity for DCR is known for fixed values of the number of terminals k n and diameter d, being n the number of nodes in the network. The contributions of this article are two-fold. First, we extend the computational complexity of the DCR when the terminal size is a function of the number of nodes, this is, when k = k(n). Second, we state counting diameter-critical graphs belongs to the class of NP-Hard problems.
dc.format.extent.es.fl_str_mv 9 p.
dc.format.mimetype.es.fl_str_mv aplication/pdf
dc.identifier.citation.es.fl_str_mv CANALE, Eduardo, ROBLEDO AMOZA, Franco, ROMERO, Pablo, y otros. Network reliability analysis and intractability of counting diameter crystal graphs [en línea]. Montevideo : UR.FI-INCO, PEDECIBA Informática, 2016
dc.identifier.issn.none.fl_str_mv 0797-6410
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/9204
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv UR.FI-INCO, PEDECIBA Informática
dc.relation.ispartof.none.fl_str_mv Reportes Técnicos;
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Computational complexity
Network reliability
Diameter-critical graphs
dc.title.none.fl_str_mv Network reliability analysis and intractability of counting diameter crystal graphs
dc.type.es.fl_str_mv Reporte técnico
dc.type.none.fl_str_mv info:eu-repo/semantics/report
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Consider a stochastic network, where nodes are perfect but links fail independently, ruled by failure probabilities. Additionally, we are given distinguished nodes, called terminals, and a positive integer, called diameter. The event under study is to connect terminals by paths not longer than the given diameter. The probability of this event is called diameter-constrained reliability (DCR, for short). Since the DCR subsumes connectedness probability of random graphs, its computation belongs to the class of NP-Hard problems. The computational complexity for DCR is known for fixed values of the number of terminals k n and diameter d, being n the number of nodes in the network. The contributions of this article are two-fold. First, we extend the computational complexity of the DCR when the terminal size is a function of the number of nodes, this is, when k = k(n). Second, we state counting diameter-critical graphs belongs to the class of NP-Hard problems.
eu_rights_str_mv openAccess
format report
id COLIBRI_5fdb8f92c3ec5462423643ac1e47d251
identifier_str_mv CANALE, Eduardo, ROBLEDO AMOZA, Franco, ROMERO, Pablo, y otros. Network reliability analysis and intractability of counting diameter crystal graphs [en línea]. Montevideo : UR.FI-INCO, PEDECIBA Informática, 2016
0797-6410
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/9204
publishDate 2016
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling Canale Eduardo, Universidad de la República (Uruguay). Facultad de Ingeniería.Robledo Amoza Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.Romero Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Rubino Gerardo, Universidad de la República (Uruguay). Facultad de Ingeniería.2017-07-21T17:31:55Z2017-07-21T17:31:55Z2016CANALE, Eduardo, ROBLEDO AMOZA, Franco, ROMERO, Pablo, y otros. Network reliability analysis and intractability of counting diameter crystal graphs [en línea]. Montevideo : UR.FI-INCO, PEDECIBA Informática, 20160797-6410http://hdl.handle.net/20.500.12008/9204Consider a stochastic network, where nodes are perfect but links fail independently, ruled by failure probabilities. Additionally, we are given distinguished nodes, called terminals, and a positive integer, called diameter. The event under study is to connect terminals by paths not longer than the given diameter. The probability of this event is called diameter-constrained reliability (DCR, for short). Since the DCR subsumes connectedness probability of random graphs, its computation belongs to the class of NP-Hard problems. The computational complexity for DCR is known for fixed values of the number of terminals k n and diameter d, being n the number of nodes in the network. The contributions of this article are two-fold. First, we extend the computational complexity of the DCR when the terminal size is a function of the number of nodes, this is, when k = k(n). Second, we state counting diameter-critical graphs belongs to the class of NP-Hard problems.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2017-07-21T17:31:55Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) TR1605.pdf: 163423 bytes, checksum: a1b57aa3fdc83cc93455d1925244af12 (MD5)Made available in DSpace on 2017-07-21T17:31:55Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) TR1605.pdf: 163423 bytes, checksum: a1b57aa3fdc83cc93455d1925244af12 (MD5) Previous issue date: 20169 p.aplication/pdfenengUR.FI-INCO, PEDECIBA InformáticaReportes Técnicos;Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Computational complexityNetwork reliabilityDiameter-critical graphsNetwork reliability analysis and intractability of counting diameter crystal graphsReporte técnicoinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCanale, EduardoRobledo Amoza, Franco RafaelRomero, PabloRubino, GerardoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/9204/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/9204/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/9204/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/9204/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTR1605.pdfTR1605.pdfapplication/pdf163423http://localhost:8080/xmlui/bitstream/20.500.12008/9204/1/TR1605.pdfa1b57aa3fdc83cc93455d1925244af12MD5120.500.12008/92042019-12-27 16:07:29.261oai:colibri.udelar.edu.uy:20.500.12008/9204VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:34:02.661044COLIBRI - Universidad de la Repúblicafalse
spellingShingle Network reliability analysis and intractability of counting diameter crystal graphs
Canale, Eduardo
Computational complexity
Network reliability
Diameter-critical graphs
status_str publishedVersion
title Network reliability analysis and intractability of counting diameter crystal graphs
title_full Network reliability analysis and intractability of counting diameter crystal graphs
title_fullStr Network reliability analysis and intractability of counting diameter crystal graphs
title_full_unstemmed Network reliability analysis and intractability of counting diameter crystal graphs
title_short Network reliability analysis and intractability of counting diameter crystal graphs
title_sort Network reliability analysis and intractability of counting diameter crystal graphs
topic Computational complexity
Network reliability
Diameter-critical graphs
url http://hdl.handle.net/20.500.12008/9204