Universally consistent estimation of the reach
Resumen:
The reach of a set M⊂Rd, also known as condition number when M is a manifold, was introduced by Federer in 1959. The reach is a central concept in geometric measure theory, set estimation, manifold learning, among others areas. We introduce a universally consistent estimate of the reach, just assuming that the reach is positive. Under an additional assumption we provide rates of convergence. We also show that it is not possible to determine, based on a finite sample, if the reach of the support of a density is zero or not. We provide a small simulation study and a bias correction method for the case when M is a manifold.
2022 | |
ANII: FCE_1_2019_1_156054 | |
Mathematics - Statistics theory | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/37376 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Level set and density estimation on manifolds
Autor(es):: Cholaquidis, Alejandro
Fecha de publicación:: (2021) -
Weighted lens depth: Some applications to supervised classification
Autor(es):: Cholaquidis, Alejandro
Fecha de publicación:: (2020) -
Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group
Autor(es):: De Polsi Astapenco, Gonzalo
Fecha de publicación:: (2020) -
A database of paramodular forms from quinary orthogonal modular forms
Autor(es):: Assaf, Eran
Fecha de publicación:: (2023) -
On the 2-Selmer group of Jacobians of hyperelliptic curves
Autor(es):: Barrera Salazar, Daniel
Fecha de publicación:: (2023)