Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas
Supervisor(es): Méndez, Eduardo - Tosar, Juan Pablo
Resumen:
Las nanopartículas de oro posiblemente sean una de las nanoestructuras con más uso a lo largo de la historia. Esto es en gran parte se debe a su ruta de síntesis sencilla, y a sus propiedades fisicoquímicas particulares donde se destaca su gran capacidad de absorción de luz y los cambios espectrales que surgen de la variación del tamaño y estado de agregación. Esto es particularmente usado en sensores de tipo colorimétrico e inmunocromatográfico, donde el evento de reconocimiento tiene lugar a través de alguna molécula inmovilizada en la superficie de la AuNP. Cuando esta molécula es de naturaleza biológica hablamos de bioconjugación y de biosensores. En este trabajo se exploró la inmovilización de diferentes proteínas (anticuerpos, BSA, estreptavidina y proteína A/G) sobre la superficie de AuNPs, y al mismo tiempo cada uno de los bioconjugados fue interrogado por diferentes técnicas experimentales a fin de evaluar la calidad del bioconjugado obtenido y las propiedades del sistema coloidal resultante. Entre las técnicas comúnmente empleadas en nanoquímica se destacaron por la contundencia de la información obtenida la espectrofotometría, microscopía electrónica de transmisión (TEM), dispersión dinámica de luz (DLS), potencial Z, estudio de la estabilidad coloidal y espectroscopía Raman aumentada por superficie (SERS). Al mismo tiempo ensayos de movilidad electroforética, exclusión molecular (SEC) o voltamperometría cíclica se destacaron también por su utilidad en la evaluación de protocolos de bioconjugación. De los conjugados más estables obtenidos se destacaron las AuNPs conjugadas a proteína A/G, las cuales fueron empleadas exitosamente en un inmunoensayo mediante TEM para detección de vesículas extracelulares (EVs).Además de posibilitar la detección de EVs, el inmunoensayo permitió caracterizar el nivel de expresión relativo de dos marcadores de superficie (tetraspaninas CD9 y CD81) de las EVs, obteniéndose resultados similares a técnicas ortogonales como la citometría de flujo y ExoView. Por último, se evaluó la inmovilización de una proteína ingenierizada (SpyCatcher) modificada con una cisteína terminal, de cara a permitir su anclaje covalente vía formación de un enlace S-Au. Los conjugados AuNP-SpyCatcher pueden ser empleados a futuro como sistema de inmovilización covalente de proteínas que incorporen la secuencia SpyTag que se une de forma específica a SpyCatcher. Con las técnicas de caracterización optimizadas en este trabajo se obtuvo evidencia de la inmovilización de SpyCatcher sobre AuNPs, y de su capacidad de unión a una proteína conteniendo la secuencia SpyTag. Sin embargo, no fue posible obtener evidencia contundente de que la unión se realizara vía tiol de la cisteína, aunque se presentan ensayos preliminares que apuntan en dicha dirección.
2023 | |
Nanopartículas Bioconjugación Bioensayos Vesículas extracelulares |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/41874 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1810421877457289216 |
---|---|
author | Fagúndez Ferrón, Pablo Martín |
author_facet | Fagúndez Ferrón, Pablo Martín |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 93118cfa1b9523c14db78dd2fb7a8105 489f03e71d39068f329bdec8798bce58 1fbbdc437b03e012595b105cee136f9e |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/41874/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/41874/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/41874/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/41874/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/41874/1/TD_Fagundez.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Fagúndez Ferrón Pablo Martín |
dc.creator.advisor.none.fl_str_mv | Méndez, Eduardo Tosar, Juan Pablo |
dc.creator.none.fl_str_mv | Fagúndez Ferrón, Pablo Martín |
dc.date.accessioned.none.fl_str_mv | 2023-12-14T16:12:04Z |
dc.date.available.none.fl_str_mv | 2023-12-14T16:12:04Z |
dc.date.issued.none.fl_str_mv | 2023 |
dc.description.abstract.none.fl_txt_mv | Las nanopartículas de oro posiblemente sean una de las nanoestructuras con más uso a lo largo de la historia. Esto es en gran parte se debe a su ruta de síntesis sencilla, y a sus propiedades fisicoquímicas particulares donde se destaca su gran capacidad de absorción de luz y los cambios espectrales que surgen de la variación del tamaño y estado de agregación. Esto es particularmente usado en sensores de tipo colorimétrico e inmunocromatográfico, donde el evento de reconocimiento tiene lugar a través de alguna molécula inmovilizada en la superficie de la AuNP. Cuando esta molécula es de naturaleza biológica hablamos de bioconjugación y de biosensores. En este trabajo se exploró la inmovilización de diferentes proteínas (anticuerpos, BSA, estreptavidina y proteína A/G) sobre la superficie de AuNPs, y al mismo tiempo cada uno de los bioconjugados fue interrogado por diferentes técnicas experimentales a fin de evaluar la calidad del bioconjugado obtenido y las propiedades del sistema coloidal resultante. Entre las técnicas comúnmente empleadas en nanoquímica se destacaron por la contundencia de la información obtenida la espectrofotometría, microscopía electrónica de transmisión (TEM), dispersión dinámica de luz (DLS), potencial Z, estudio de la estabilidad coloidal y espectroscopía Raman aumentada por superficie (SERS). Al mismo tiempo ensayos de movilidad electroforética, exclusión molecular (SEC) o voltamperometría cíclica se destacaron también por su utilidad en la evaluación de protocolos de bioconjugación. De los conjugados más estables obtenidos se destacaron las AuNPs conjugadas a proteína A/G, las cuales fueron empleadas exitosamente en un inmunoensayo mediante TEM para detección de vesículas extracelulares (EVs).Además de posibilitar la detección de EVs, el inmunoensayo permitió caracterizar el nivel de expresión relativo de dos marcadores de superficie (tetraspaninas CD9 y CD81) de las EVs, obteniéndose resultados similares a técnicas ortogonales como la citometría de flujo y ExoView. Por último, se evaluó la inmovilización de una proteína ingenierizada (SpyCatcher) modificada con una cisteína terminal, de cara a permitir su anclaje covalente vía formación de un enlace S-Au. Los conjugados AuNP-SpyCatcher pueden ser empleados a futuro como sistema de inmovilización covalente de proteínas que incorporen la secuencia SpyTag que se une de forma específica a SpyCatcher. Con las técnicas de caracterización optimizadas en este trabajo se obtuvo evidencia de la inmovilización de SpyCatcher sobre AuNPs, y de su capacidad de unión a una proteína conteniendo la secuencia SpyTag. Sin embargo, no fue posible obtener evidencia contundente de que la unión se realizara vía tiol de la cisteína, aunque se presentan ensayos preliminares que apuntan en dicha dirección. |
dc.description.tableofcontents.es.fl_txt_mv | Resumen. -- i Abstract -- iii Agradecimientos -- vi Lista de abreviaturas -- 1. Introducción -- 1.1 Nanotecnología y nanomateriales -- 1.2 Nanopartículas metálicas -- 1.3 Generalidades de las nanopartículas de oro (AuNPs ) -- 1.4 Estrategias de bioconjugación de proteínas a AuNPs -- 1.5 Consideraciones fisicoquímicas sobre el proceso de adsorción de proteínas a NPs. --1.6 Técnicas para la caracterización de AuNPs y AuNPs bioconjugadas -- 1.7 Aplicaciones bionanalíticas de las AuNPs -- 1.8 Generalidades de exosomas y otras vesículas extracelulares (EVs) -- 2. Objetivos -- 2.1. Objetivos generales -- 2.2. Objetivos específicos -- 3. Materiales y métodos -- 3.1 Reactivos y soluciones -- 3.2 Procedimientos de síntesis -- 3.3 Procedimientos de caracterización de AuNPs -- 3.4 Obtención y purificación de vesículas extracelulares (EVs) -- 3.5 Cuantificación y caracterización de EVs -- 3.6 Ensayos colorimétricos para detección de EVs con AuNPs-- 3.7 Caracterización de EVs con AuNPs mediante TEM -- 3.8 Estudio de la inmovilización de proteínas ingenierizadas sobre AuNPs -- 4. Resultados y discusión -- Capítulo 1: Síntesis, caracterización y modificación de AuNPs -- Capítulo 2: Nanopartículas de oro modificadas con proteína A/G para detección de vesículas extracelulares (EVs) -- Capítulo 3: Inmovilización de la proteína spycatcher y sus formas modificadas sobre AuNP. --5. Conclusiones y perspectivas. --6. Bibliografía. -- 7. Anexos |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Fagúndez Ferrón, P. Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2023 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/41874 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar. FQ |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Nanopartículas Bioconjugación Bioensayos Vesículas extracelulares |
dc.title.none.fl_str_mv | Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas |
dc.type.es.fl_str_mv | Tesis de doctorado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Las nanopartículas de oro posiblemente sean una de las nanoestructuras con más uso a lo largo de la historia. Esto es en gran parte se debe a su ruta de síntesis sencilla, y a sus propiedades fisicoquímicas particulares donde se destaca su gran capacidad de absorción de luz y los cambios espectrales que surgen de la variación del tamaño y estado de agregación. Esto es particularmente usado en sensores de tipo colorimétrico e inmunocromatográfico, donde el evento de reconocimiento tiene lugar a través de alguna molécula inmovilizada en la superficie de la AuNP. Cuando esta molécula es de naturaleza biológica hablamos de bioconjugación y de biosensores. En este trabajo se exploró la inmovilización de diferentes proteínas (anticuerpos, BSA, estreptavidina y proteína A/G) sobre la superficie de AuNPs, y al mismo tiempo cada uno de los bioconjugados fue interrogado por diferentes técnicas experimentales a fin de evaluar la calidad del bioconjugado obtenido y las propiedades del sistema coloidal resultante. Entre las técnicas comúnmente empleadas en nanoquímica se destacaron por la contundencia de la información obtenida la espectrofotometría, microscopía electrónica de transmisión (TEM), dispersión dinámica de luz (DLS), potencial Z, estudio de la estabilidad coloidal y espectroscopía Raman aumentada por superficie (SERS). Al mismo tiempo ensayos de movilidad electroforética, exclusión molecular (SEC) o voltamperometría cíclica se destacaron también por su utilidad en la evaluación de protocolos de bioconjugación. De los conjugados más estables obtenidos se destacaron las AuNPs conjugadas a proteína A/G, las cuales fueron empleadas exitosamente en un inmunoensayo mediante TEM para detección de vesículas extracelulares (EVs).Además de posibilitar la detección de EVs, el inmunoensayo permitió caracterizar el nivel de expresión relativo de dos marcadores de superficie (tetraspaninas CD9 y CD81) de las EVs, obteniéndose resultados similares a técnicas ortogonales como la citometría de flujo y ExoView. Por último, se evaluó la inmovilización de una proteína ingenierizada (SpyCatcher) modificada con una cisteína terminal, de cara a permitir su anclaje covalente vía formación de un enlace S-Au. Los conjugados AuNP-SpyCatcher pueden ser empleados a futuro como sistema de inmovilización covalente de proteínas que incorporen la secuencia SpyTag que se une de forma específica a SpyCatcher. Con las técnicas de caracterización optimizadas en este trabajo se obtuvo evidencia de la inmovilización de SpyCatcher sobre AuNPs, y de su capacidad de unión a una proteína conteniendo la secuencia SpyTag. Sin embargo, no fue posible obtener evidencia contundente de que la unión se realizara vía tiol de la cisteína, aunque se presentan ensayos preliminares que apuntan en dicha dirección. |
eu_rights_str_mv | openAccess |
format | doctoralThesis |
id | COLIBRI_5e31cdf44361d27501e1df7fe4a274ab |
identifier_str_mv | Fagúndez Ferrón, P. Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2023 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/41874 |
publishDate | 2023 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Fagúndez Ferrón Pablo Martín2023-12-14T16:12:04Z2023-12-14T16:12:04Z2023Fagúndez Ferrón, P. Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2023https://hdl.handle.net/20.500.12008/41874Las nanopartículas de oro posiblemente sean una de las nanoestructuras con más uso a lo largo de la historia. Esto es en gran parte se debe a su ruta de síntesis sencilla, y a sus propiedades fisicoquímicas particulares donde se destaca su gran capacidad de absorción de luz y los cambios espectrales que surgen de la variación del tamaño y estado de agregación. Esto es particularmente usado en sensores de tipo colorimétrico e inmunocromatográfico, donde el evento de reconocimiento tiene lugar a través de alguna molécula inmovilizada en la superficie de la AuNP. Cuando esta molécula es de naturaleza biológica hablamos de bioconjugación y de biosensores. En este trabajo se exploró la inmovilización de diferentes proteínas (anticuerpos, BSA, estreptavidina y proteína A/G) sobre la superficie de AuNPs, y al mismo tiempo cada uno de los bioconjugados fue interrogado por diferentes técnicas experimentales a fin de evaluar la calidad del bioconjugado obtenido y las propiedades del sistema coloidal resultante. Entre las técnicas comúnmente empleadas en nanoquímica se destacaron por la contundencia de la información obtenida la espectrofotometría, microscopía electrónica de transmisión (TEM), dispersión dinámica de luz (DLS), potencial Z, estudio de la estabilidad coloidal y espectroscopía Raman aumentada por superficie (SERS). Al mismo tiempo ensayos de movilidad electroforética, exclusión molecular (SEC) o voltamperometría cíclica se destacaron también por su utilidad en la evaluación de protocolos de bioconjugación. De los conjugados más estables obtenidos se destacaron las AuNPs conjugadas a proteína A/G, las cuales fueron empleadas exitosamente en un inmunoensayo mediante TEM para detección de vesículas extracelulares (EVs).Además de posibilitar la detección de EVs, el inmunoensayo permitió caracterizar el nivel de expresión relativo de dos marcadores de superficie (tetraspaninas CD9 y CD81) de las EVs, obteniéndose resultados similares a técnicas ortogonales como la citometría de flujo y ExoView. Por último, se evaluó la inmovilización de una proteína ingenierizada (SpyCatcher) modificada con una cisteína terminal, de cara a permitir su anclaje covalente vía formación de un enlace S-Au. Los conjugados AuNP-SpyCatcher pueden ser empleados a futuro como sistema de inmovilización covalente de proteínas que incorporen la secuencia SpyTag que se une de forma específica a SpyCatcher. Con las técnicas de caracterización optimizadas en este trabajo se obtuvo evidencia de la inmovilización de SpyCatcher sobre AuNPs, y de su capacidad de unión a una proteína conteniendo la secuencia SpyTag. Sin embargo, no fue posible obtener evidencia contundente de que la unión se realizara vía tiol de la cisteína, aunque se presentan ensayos preliminares que apuntan en dicha dirección.Submitted by Cabrera Jeniffer (jenikana@gmail.com) on 2023-12-14T16:07:54Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) TD_Fagundez.pdf: 12534788 bytes, checksum: 1fbbdc437b03e012595b105cee136f9e (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-12-14T16:12:04Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) TD_Fagundez.pdf: 12534788 bytes, checksum: 1fbbdc437b03e012595b105cee136f9e (MD5) Previous issue date: 2023Resumen. -- i Abstract -- iii Agradecimientos -- vi Lista de abreviaturas -- 1. Introducción -- 1.1 Nanotecnología y nanomateriales -- 1.2 Nanopartículas metálicas -- 1.3 Generalidades de las nanopartículas de oro (AuNPs ) -- 1.4 Estrategias de bioconjugación de proteínas a AuNPs -- 1.5 Consideraciones fisicoquímicas sobre el proceso de adsorción de proteínas a NPs. --1.6 Técnicas para la caracterización de AuNPs y AuNPs bioconjugadas -- 1.7 Aplicaciones bionanalíticas de las AuNPs -- 1.8 Generalidades de exosomas y otras vesículas extracelulares (EVs) -- 2. Objetivos -- 2.1. Objetivos generales -- 2.2. Objetivos específicos -- 3. Materiales y métodos -- 3.1 Reactivos y soluciones -- 3.2 Procedimientos de síntesis -- 3.3 Procedimientos de caracterización de AuNPs -- 3.4 Obtención y purificación de vesículas extracelulares (EVs) -- 3.5 Cuantificación y caracterización de EVs -- 3.6 Ensayos colorimétricos para detección de EVs con AuNPs-- 3.7 Caracterización de EVs con AuNPs mediante TEM -- 3.8 Estudio de la inmovilización de proteínas ingenierizadas sobre AuNPs -- 4. Resultados y discusión -- Capítulo 1: Síntesis, caracterización y modificación de AuNPs -- Capítulo 2: Nanopartículas de oro modificadas con proteína A/G para detección de vesículas extracelulares (EVs) -- Capítulo 3: Inmovilización de la proteína spycatcher y sus formas modificadas sobre AuNP. --5. Conclusiones y perspectivas. --6. Bibliografía. -- 7. Anexosapplication/pdfesspaUdelar. FQLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)NanopartículasBioconjugaciónBioensayosVesículas extracelularesSíntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticasTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaFagúndez Ferrón, Pablo MartínMéndez, EduardoTosar, Juan PabloUniversidad de la República (Uruguay). Facultad de QuímicaDoctor en QuímicaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/41874/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/41874/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822536http://localhost:8080/xmlui/bitstream/20.500.12008/41874/3/license_text93118cfa1b9523c14db78dd2fb7a8105MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/41874/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALTD_Fagundez.pdfTD_Fagundez.pdfapplication/pdf12534788http://localhost:8080/xmlui/bitstream/20.500.12008/41874/1/TD_Fagundez.pdf1fbbdc437b03e012595b105cee136f9eMD5120.500.12008/418742024-09-13 19:19:06.069oai:colibri.udelar.edu.uy:20.500.12008/41874VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-09-13T22:19:06COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas Fagúndez Ferrón, Pablo Martín Nanopartículas Bioconjugación Bioensayos Vesículas extracelulares |
status_str | acceptedVersion |
title | Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas |
title_full | Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas |
title_fullStr | Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas |
title_full_unstemmed | Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas |
title_short | Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas |
title_sort | Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas |
topic | Nanopartículas Bioconjugación Bioensayos Vesículas extracelulares |
url | https://hdl.handle.net/20.500.12008/41874 |