Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas

Fagúndez Ferrón, Pablo Martín

Supervisor(es): Méndez, Eduardo - Tosar, Juan Pablo

Resumen:

Las nanopartículas de oro posiblemente sean una de las nanoestructuras con más uso a lo largo de la historia. Esto es en gran parte se debe a su ruta de síntesis sencilla, y a sus propiedades fisicoquímicas particulares donde se destaca su gran capacidad de absorción de luz y los cambios espectrales que surgen de la variación del tamaño y estado de agregación. Esto es particularmente usado en sensores de tipo colorimétrico e inmunocromatográfico, donde el evento de reconocimiento tiene lugar a través de alguna molécula inmovilizada en la superficie de la AuNP. Cuando esta molécula es de naturaleza biológica hablamos de bioconjugación y de biosensores. En este trabajo se exploró la inmovilización de diferentes proteínas (anticuerpos, BSA, estreptavidina y proteína A/G) sobre la superficie de AuNPs, y al mismo tiempo cada uno de los bioconjugados fue interrogado por diferentes técnicas experimentales a fin de evaluar la calidad del bioconjugado obtenido y las propiedades del sistema coloidal resultante. Entre las técnicas comúnmente empleadas en nanoquímica se destacaron por la contundencia de la información obtenida la espectrofotometría, microscopía electrónica de transmisión (TEM), dispersión dinámica de luz (DLS), potencial Z, estudio de la estabilidad coloidal y espectroscopía Raman aumentada por superficie (SERS). Al mismo tiempo ensayos de movilidad electroforética, exclusión molecular (SEC) o voltamperometría cíclica se destacaron también por su utilidad en la evaluación de protocolos de bioconjugación. De los conjugados más estables obtenidos se destacaron las AuNPs conjugadas a proteína A/G, las cuales fueron empleadas exitosamente en un inmunoensayo mediante TEM para detección de vesículas extracelulares (EVs).Además de posibilitar la detección de EVs, el inmunoensayo permitió caracterizar el nivel de expresión relativo de dos marcadores de superficie (tetraspaninas CD9 y CD81) de las EVs, obteniéndose resultados similares a técnicas ortogonales como la citometría de flujo y ExoView. Por último, se evaluó la inmovilización de una proteína ingenierizada (SpyCatcher) modificada con una cisteína terminal, de cara a permitir su anclaje covalente vía formación de un enlace S-Au. Los conjugados AuNP-SpyCatcher pueden ser empleados a futuro como sistema de inmovilización covalente de proteínas que incorporen la secuencia SpyTag que se une de forma específica a SpyCatcher. Con las técnicas de caracterización optimizadas en este trabajo se obtuvo evidencia de la inmovilización de SpyCatcher sobre AuNPs, y de su capacidad de unión a una proteína conteniendo la secuencia SpyTag. Sin embargo, no fue posible obtener evidencia contundente de que la unión se realizara vía tiol de la cisteína, aunque se presentan ensayos preliminares que apuntan en dicha dirección.


Detalles Bibliográficos
2023
Nanopartículas
Bioconjugación
Bioensayos
Vesículas extracelulares
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/41874
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1810421877457289216
author Fagúndez Ferrón, Pablo Martín
author_facet Fagúndez Ferrón, Pablo Martín
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
93118cfa1b9523c14db78dd2fb7a8105
489f03e71d39068f329bdec8798bce58
1fbbdc437b03e012595b105cee136f9e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/41874/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/41874/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/41874/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/41874/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/41874/1/TD_Fagundez.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Fagúndez Ferrón Pablo Martín
dc.creator.advisor.none.fl_str_mv Méndez, Eduardo
Tosar, Juan Pablo
dc.creator.none.fl_str_mv Fagúndez Ferrón, Pablo Martín
dc.date.accessioned.none.fl_str_mv 2023-12-14T16:12:04Z
dc.date.available.none.fl_str_mv 2023-12-14T16:12:04Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Las nanopartículas de oro posiblemente sean una de las nanoestructuras con más uso a lo largo de la historia. Esto es en gran parte se debe a su ruta de síntesis sencilla, y a sus propiedades fisicoquímicas particulares donde se destaca su gran capacidad de absorción de luz y los cambios espectrales que surgen de la variación del tamaño y estado de agregación. Esto es particularmente usado en sensores de tipo colorimétrico e inmunocromatográfico, donde el evento de reconocimiento tiene lugar a través de alguna molécula inmovilizada en la superficie de la AuNP. Cuando esta molécula es de naturaleza biológica hablamos de bioconjugación y de biosensores. En este trabajo se exploró la inmovilización de diferentes proteínas (anticuerpos, BSA, estreptavidina y proteína A/G) sobre la superficie de AuNPs, y al mismo tiempo cada uno de los bioconjugados fue interrogado por diferentes técnicas experimentales a fin de evaluar la calidad del bioconjugado obtenido y las propiedades del sistema coloidal resultante. Entre las técnicas comúnmente empleadas en nanoquímica se destacaron por la contundencia de la información obtenida la espectrofotometría, microscopía electrónica de transmisión (TEM), dispersión dinámica de luz (DLS), potencial Z, estudio de la estabilidad coloidal y espectroscopía Raman aumentada por superficie (SERS). Al mismo tiempo ensayos de movilidad electroforética, exclusión molecular (SEC) o voltamperometría cíclica se destacaron también por su utilidad en la evaluación de protocolos de bioconjugación. De los conjugados más estables obtenidos se destacaron las AuNPs conjugadas a proteína A/G, las cuales fueron empleadas exitosamente en un inmunoensayo mediante TEM para detección de vesículas extracelulares (EVs).Además de posibilitar la detección de EVs, el inmunoensayo permitió caracterizar el nivel de expresión relativo de dos marcadores de superficie (tetraspaninas CD9 y CD81) de las EVs, obteniéndose resultados similares a técnicas ortogonales como la citometría de flujo y ExoView. Por último, se evaluó la inmovilización de una proteína ingenierizada (SpyCatcher) modificada con una cisteína terminal, de cara a permitir su anclaje covalente vía formación de un enlace S-Au. Los conjugados AuNP-SpyCatcher pueden ser empleados a futuro como sistema de inmovilización covalente de proteínas que incorporen la secuencia SpyTag que se une de forma específica a SpyCatcher. Con las técnicas de caracterización optimizadas en este trabajo se obtuvo evidencia de la inmovilización de SpyCatcher sobre AuNPs, y de su capacidad de unión a una proteína conteniendo la secuencia SpyTag. Sin embargo, no fue posible obtener evidencia contundente de que la unión se realizara vía tiol de la cisteína, aunque se presentan ensayos preliminares que apuntan en dicha dirección.
dc.description.tableofcontents.es.fl_txt_mv Resumen. -- i Abstract -- iii Agradecimientos -- vi Lista de abreviaturas -- 1. Introducción -- 1.1 Nanotecnología y nanomateriales -- 1.2 Nanopartículas metálicas -- 1.3 Generalidades de las nanopartículas de oro (AuNPs ) -- 1.4 Estrategias de bioconjugación de proteínas a AuNPs -- 1.5 Consideraciones fisicoquímicas sobre el proceso de adsorción de proteínas a NPs. --1.6 Técnicas para la caracterización de AuNPs y AuNPs bioconjugadas -- 1.7 Aplicaciones bionanalíticas de las AuNPs -- 1.8 Generalidades de exosomas y otras vesículas extracelulares (EVs) -- 2. Objetivos -- 2.1. Objetivos generales -- 2.2. Objetivos específicos -- 3. Materiales y métodos -- 3.1 Reactivos y soluciones -- 3.2 Procedimientos de síntesis -- 3.3 Procedimientos de caracterización de AuNPs -- 3.4 Obtención y purificación de vesículas extracelulares (EVs) -- 3.5 Cuantificación y caracterización de EVs -- 3.6 Ensayos colorimétricos para detección de EVs con AuNPs-- 3.7 Caracterización de EVs con AuNPs mediante TEM -- 3.8 Estudio de la inmovilización de proteínas ingenierizadas sobre AuNPs -- 4. Resultados y discusión -- Capítulo 1: Síntesis, caracterización y modificación de AuNPs -- Capítulo 2: Nanopartículas de oro modificadas con proteína A/G para detección de vesículas extracelulares (EVs) -- Capítulo 3: Inmovilización de la proteína spycatcher y sus formas modificadas sobre AuNP. --5. Conclusiones y perspectivas. --6. Bibliografía. -- 7. Anexos
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Fagúndez Ferrón, P. Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2023
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/41874
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar. FQ
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Nanopartículas
Bioconjugación
Bioensayos
Vesículas extracelulares
dc.title.none.fl_str_mv Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Las nanopartículas de oro posiblemente sean una de las nanoestructuras con más uso a lo largo de la historia. Esto es en gran parte se debe a su ruta de síntesis sencilla, y a sus propiedades fisicoquímicas particulares donde se destaca su gran capacidad de absorción de luz y los cambios espectrales que surgen de la variación del tamaño y estado de agregación. Esto es particularmente usado en sensores de tipo colorimétrico e inmunocromatográfico, donde el evento de reconocimiento tiene lugar a través de alguna molécula inmovilizada en la superficie de la AuNP. Cuando esta molécula es de naturaleza biológica hablamos de bioconjugación y de biosensores. En este trabajo se exploró la inmovilización de diferentes proteínas (anticuerpos, BSA, estreptavidina y proteína A/G) sobre la superficie de AuNPs, y al mismo tiempo cada uno de los bioconjugados fue interrogado por diferentes técnicas experimentales a fin de evaluar la calidad del bioconjugado obtenido y las propiedades del sistema coloidal resultante. Entre las técnicas comúnmente empleadas en nanoquímica se destacaron por la contundencia de la información obtenida la espectrofotometría, microscopía electrónica de transmisión (TEM), dispersión dinámica de luz (DLS), potencial Z, estudio de la estabilidad coloidal y espectroscopía Raman aumentada por superficie (SERS). Al mismo tiempo ensayos de movilidad electroforética, exclusión molecular (SEC) o voltamperometría cíclica se destacaron también por su utilidad en la evaluación de protocolos de bioconjugación. De los conjugados más estables obtenidos se destacaron las AuNPs conjugadas a proteína A/G, las cuales fueron empleadas exitosamente en un inmunoensayo mediante TEM para detección de vesículas extracelulares (EVs).Además de posibilitar la detección de EVs, el inmunoensayo permitió caracterizar el nivel de expresión relativo de dos marcadores de superficie (tetraspaninas CD9 y CD81) de las EVs, obteniéndose resultados similares a técnicas ortogonales como la citometría de flujo y ExoView. Por último, se evaluó la inmovilización de una proteína ingenierizada (SpyCatcher) modificada con una cisteína terminal, de cara a permitir su anclaje covalente vía formación de un enlace S-Au. Los conjugados AuNP-SpyCatcher pueden ser empleados a futuro como sistema de inmovilización covalente de proteínas que incorporen la secuencia SpyTag que se une de forma específica a SpyCatcher. Con las técnicas de caracterización optimizadas en este trabajo se obtuvo evidencia de la inmovilización de SpyCatcher sobre AuNPs, y de su capacidad de unión a una proteína conteniendo la secuencia SpyTag. Sin embargo, no fue posible obtener evidencia contundente de que la unión se realizara vía tiol de la cisteína, aunque se presentan ensayos preliminares que apuntan en dicha dirección.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_5e31cdf44361d27501e1df7fe4a274ab
identifier_str_mv Fagúndez Ferrón, P. Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2023
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/41874
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Fagúndez Ferrón Pablo Martín2023-12-14T16:12:04Z2023-12-14T16:12:04Z2023Fagúndez Ferrón, P. Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas [en línea] Tesis de doctorado. Montevideo : Udelar. FQ, 2023https://hdl.handle.net/20.500.12008/41874Las nanopartículas de oro posiblemente sean una de las nanoestructuras con más uso a lo largo de la historia. Esto es en gran parte se debe a su ruta de síntesis sencilla, y a sus propiedades fisicoquímicas particulares donde se destaca su gran capacidad de absorción de luz y los cambios espectrales que surgen de la variación del tamaño y estado de agregación. Esto es particularmente usado en sensores de tipo colorimétrico e inmunocromatográfico, donde el evento de reconocimiento tiene lugar a través de alguna molécula inmovilizada en la superficie de la AuNP. Cuando esta molécula es de naturaleza biológica hablamos de bioconjugación y de biosensores. En este trabajo se exploró la inmovilización de diferentes proteínas (anticuerpos, BSA, estreptavidina y proteína A/G) sobre la superficie de AuNPs, y al mismo tiempo cada uno de los bioconjugados fue interrogado por diferentes técnicas experimentales a fin de evaluar la calidad del bioconjugado obtenido y las propiedades del sistema coloidal resultante. Entre las técnicas comúnmente empleadas en nanoquímica se destacaron por la contundencia de la información obtenida la espectrofotometría, microscopía electrónica de transmisión (TEM), dispersión dinámica de luz (DLS), potencial Z, estudio de la estabilidad coloidal y espectroscopía Raman aumentada por superficie (SERS). Al mismo tiempo ensayos de movilidad electroforética, exclusión molecular (SEC) o voltamperometría cíclica se destacaron también por su utilidad en la evaluación de protocolos de bioconjugación. De los conjugados más estables obtenidos se destacaron las AuNPs conjugadas a proteína A/G, las cuales fueron empleadas exitosamente en un inmunoensayo mediante TEM para detección de vesículas extracelulares (EVs).Además de posibilitar la detección de EVs, el inmunoensayo permitió caracterizar el nivel de expresión relativo de dos marcadores de superficie (tetraspaninas CD9 y CD81) de las EVs, obteniéndose resultados similares a técnicas ortogonales como la citometría de flujo y ExoView. Por último, se evaluó la inmovilización de una proteína ingenierizada (SpyCatcher) modificada con una cisteína terminal, de cara a permitir su anclaje covalente vía formación de un enlace S-Au. Los conjugados AuNP-SpyCatcher pueden ser empleados a futuro como sistema de inmovilización covalente de proteínas que incorporen la secuencia SpyTag que se une de forma específica a SpyCatcher. Con las técnicas de caracterización optimizadas en este trabajo se obtuvo evidencia de la inmovilización de SpyCatcher sobre AuNPs, y de su capacidad de unión a una proteína conteniendo la secuencia SpyTag. Sin embargo, no fue posible obtener evidencia contundente de que la unión se realizara vía tiol de la cisteína, aunque se presentan ensayos preliminares que apuntan en dicha dirección.Submitted by Cabrera Jeniffer (jenikana@gmail.com) on 2023-12-14T16:07:54Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) TD_Fagundez.pdf: 12534788 bytes, checksum: 1fbbdc437b03e012595b105cee136f9e (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-12-14T16:12:04Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) TD_Fagundez.pdf: 12534788 bytes, checksum: 1fbbdc437b03e012595b105cee136f9e (MD5) Previous issue date: 2023Resumen. -- i Abstract -- iii Agradecimientos -- vi Lista de abreviaturas -- 1. Introducción -- 1.1 Nanotecnología y nanomateriales -- 1.2 Nanopartículas metálicas -- 1.3 Generalidades de las nanopartículas de oro (AuNPs ) -- 1.4 Estrategias de bioconjugación de proteínas a AuNPs -- 1.5 Consideraciones fisicoquímicas sobre el proceso de adsorción de proteínas a NPs. --1.6 Técnicas para la caracterización de AuNPs y AuNPs bioconjugadas -- 1.7 Aplicaciones bionanalíticas de las AuNPs -- 1.8 Generalidades de exosomas y otras vesículas extracelulares (EVs) -- 2. Objetivos -- 2.1. Objetivos generales -- 2.2. Objetivos específicos -- 3. Materiales y métodos -- 3.1 Reactivos y soluciones -- 3.2 Procedimientos de síntesis -- 3.3 Procedimientos de caracterización de AuNPs -- 3.4 Obtención y purificación de vesículas extracelulares (EVs) -- 3.5 Cuantificación y caracterización de EVs -- 3.6 Ensayos colorimétricos para detección de EVs con AuNPs-- 3.7 Caracterización de EVs con AuNPs mediante TEM -- 3.8 Estudio de la inmovilización de proteínas ingenierizadas sobre AuNPs -- 4. Resultados y discusión -- Capítulo 1: Síntesis, caracterización y modificación de AuNPs -- Capítulo 2: Nanopartículas de oro modificadas con proteína A/G para detección de vesículas extracelulares (EVs) -- Capítulo 3: Inmovilización de la proteína spycatcher y sus formas modificadas sobre AuNP. --5. Conclusiones y perspectivas. --6. Bibliografía. -- 7. Anexosapplication/pdfesspaUdelar. FQLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)NanopartículasBioconjugaciónBioensayosVesículas extracelularesSíntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticasTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaFagúndez Ferrón, Pablo MartínMéndez, EduardoTosar, Juan PabloUniversidad de la República (Uruguay). Facultad de QuímicaDoctor en QuímicaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/41874/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/41874/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822536http://localhost:8080/xmlui/bitstream/20.500.12008/41874/3/license_text93118cfa1b9523c14db78dd2fb7a8105MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/41874/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINALTD_Fagundez.pdfTD_Fagundez.pdfapplication/pdf12534788http://localhost:8080/xmlui/bitstream/20.500.12008/41874/1/TD_Fagundez.pdf1fbbdc437b03e012595b105cee136f9eMD5120.500.12008/418742024-09-13 19:19:06.069oai:colibri.udelar.edu.uy:20.500.12008/41874VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-09-13T22:19:06COLIBRI - Universidad de la Repúblicafalse
spellingShingle Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas
Fagúndez Ferrón, Pablo Martín
Nanopartículas
Bioconjugación
Bioensayos
Vesículas extracelulares
status_str acceptedVersion
title Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas
title_full Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas
title_fullStr Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas
title_full_unstemmed Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas
title_short Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas
title_sort Síntesis y caracterización de nanopartículas de oro bioconjugadas para aplicaciones bioanalíticas
topic Nanopartículas
Bioconjugación
Bioensayos
Vesículas extracelulares
url https://hdl.handle.net/20.500.12008/41874