Conditions for the finiteness of the moments of the volume of level sets
Resumen:
Let X(t) be a Gaussian random field R d → R. Using the notion of (d − 1)-integral geometric measures, we establish a relation between (a) the volume of level sets, and (b) the number of crossings of the restriction of the random field to a line. Using this relation we prove the equivalence between the finiteness of the expectation and the finiteness of the second spectral moment matrix. Sufficient conditions for finiteness of higher moments are also established.
2019 | |
Gaussian fields Nodal sets Crofton formula Kac-Rice formula |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/28107 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
Resultados similares
-
Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems
Autor(es):: Azaïs, J.M.
Fecha de publicación:: (2021) -
Estimation of surface area
Autor(es):: Aaron, Catherine
Fecha de publicación:: (2022) -
Número de Condición y Matrices Aleatorias
Autor(es):: Armentano, Diego
Fecha de publicación:: (2005) -
Sistemas polinomiales aleatorios
Autor(es):: Armentano, Diego
Fecha de publicación:: (2007) -
On the finiteness of the moments of the measure of level sets of random fields
Autor(es):: Armentano, Diego
Fecha de publicación:: (2020)