Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales.

de Almeida Lucas, Everton - Gutiérrez Arce, Alejandro - Camargo, Sandro

Resumen:

En Uruguay se tiene el 34.43% de la matriz energética de origen eólico. Dada la característica fluctuante del viento es necesario incorporar modelos de pronóstico de energía eólica, de modo de suministrar información para realizarse el despacho óptimo de energía en el sistema eléctrico. Este trabajo presenta los resultados de ocho modelos de pronóstico desarrollados, siendo cuatro en base a un híbrido de modelo numérico de mesoescala y regresión lineal (WRF-RL) y cuatro en base a modelo numérico de mesoescala y redes neuronales artificiales (WRF-RNA). Los resultados fueron evaluados para un total de 31 parques eólicos ubicados en Uruguay, y el modelo que mostró el mejor desempeño fue un modelo híbrido del tipo WRF-RNA. En un análisis del ciclo diario, considerando un pronóstico con la suma de potencia de todos los parques eólicos, los resultados muestran que los menores valores de sesgo (bias) fueron de los modelos en base a WRF-RNA, así como menores valores de error medio absoluto (entre 10% y 6.5%), compararado con el modelo WRF-RL (entre 14 % y 9 %).


In Uruguay, 34.43 percent of the energy matrix comes from wind energy. Given the wind’s fluctuating characteristics it is a necessity to incorporate wind energy prediction models in order to give the proper information to achieve an optimal energy dispatch in the electrical system. This paper presents the results of the eight prediction models developed, with four being based on an hybrid of the mesoscale numeric model and linear regression (WRF-RL) and four based on the mesoscale numeric model and artificial neural networks (WRF-RNA). The results were evaluated for a total of 31 wind farms located in Uruguay, and the model that showed the best performance was the WRF-RNA one. When analyzing a daily cycle, considering a forecast with the power of all wind farms combined, the results show that the WRF-RNA models had not only the lowest bias value, but the lowest mean absolute error (between 10 and 6.5 percent) when compared to the WRF-RL models (between 14 and 9 percent).


Detalles Bibliográficos
2020
Energías renovables
Inteligencia artificial
Modelos de pronóstico
Despacho económico
Integración en el sistema eléctrico
Uruguay
ENERGIA EOLICA
Español
Universidad de la República
COLIBRI
http://enerlac.olade.org/index.php/ENERLAC/article/view/117
https://hdl.handle.net/20.500.12008/24818
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522888857681920
author de Almeida Lucas, Everton
author2 Gutiérrez Arce, Alejandro
Camargo, Sandro
author2_role author
author
author_facet de Almeida Lucas, Everton
Gutiérrez Arce, Alejandro
Camargo, Sandro
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
d77747f0b79dbc4c411d2260a3d95cd2
1996b8461bc290aef6a27d78c67b6b52
cfdc134805d25c2b3e253d1b56f0af93
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/24818/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/24818/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/24818/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/24818/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/24818/1/DGC20.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv de Almeida Lucas Everton, Universidad de la República (Uruguay). Facultad de Ingeniería.
Gutiérrez Arce Alejandro, Universidad de la República (Uruguay). Facultad de Ingeniería.
Camargo Sandro, Universidade Federal do Pampa (Unipampa).
dc.coverage.spatial.es.fl_str_mv Uruguay
dc.creator.none.fl_str_mv de Almeida Lucas, Everton
Gutiérrez Arce, Alejandro
Camargo, Sandro
dc.date.accessioned.none.fl_str_mv 2020-07-29T12:28:26Z
dc.date.available.none.fl_str_mv 2020-07-29T12:28:26Z
dc.date.issued.none.fl_str_mv 2020
dc.description.abstract.none.fl_txt_mv En Uruguay se tiene el 34.43% de la matriz energética de origen eólico. Dada la característica fluctuante del viento es necesario incorporar modelos de pronóstico de energía eólica, de modo de suministrar información para realizarse el despacho óptimo de energía en el sistema eléctrico. Este trabajo presenta los resultados de ocho modelos de pronóstico desarrollados, siendo cuatro en base a un híbrido de modelo numérico de mesoescala y regresión lineal (WRF-RL) y cuatro en base a modelo numérico de mesoescala y redes neuronales artificiales (WRF-RNA). Los resultados fueron evaluados para un total de 31 parques eólicos ubicados en Uruguay, y el modelo que mostró el mejor desempeño fue un modelo híbrido del tipo WRF-RNA. En un análisis del ciclo diario, considerando un pronóstico con la suma de potencia de todos los parques eólicos, los resultados muestran que los menores valores de sesgo (bias) fueron de los modelos en base a WRF-RNA, así como menores valores de error medio absoluto (entre 10% y 6.5%), compararado con el modelo WRF-RL (entre 14 % y 9 %).
In Uruguay, 34.43 percent of the energy matrix comes from wind energy. Given the wind’s fluctuating characteristics it is a necessity to incorporate wind energy prediction models in order to give the proper information to achieve an optimal energy dispatch in the electrical system. This paper presents the results of the eight prediction models developed, with four being based on an hybrid of the mesoscale numeric model and linear regression (WRF-RL) and four based on the mesoscale numeric model and artificial neural networks (WRF-RNA). The results were evaluated for a total of 31 wind farms located in Uruguay, and the model that showed the best performance was the WRF-RNA one. When analyzing a daily cycle, considering a forecast with the power of all wind farms combined, the results show that the WRF-RNA models had not only the lowest bias value, but the lowest mean absolute error (between 10 and 6.5 percent) when compared to the WRF-RL models (between 14 and 9 percent).
dc.format.extent.es.fl_str_mv 15 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv de Almeida Lucas, E., Gutiérrez Arce, A. y Camargo, S. "Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales". ENERLAC : Revista de Energía de Latinoamérica y el Caribe. [en línea]. v. 4, no. 1, pp. 32-43, 2020.
dc.identifier.eissn.none.fl_str_mv 2631-2522
dc.identifier.uri.none.fl_str_mv http://enerlac.olade.org/index.php/ENERLAC/article/view/117
https://hdl.handle.net/20.500.12008/24818
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Organización Latinoamericana de Energía (OLADE)
dc.relation.ispartof.es.fl_str_mv ENERLAC : Revista de Energía de Latinoamérica y el Caribe, Vol.4, No. 1, pp. 32-43, Jun. 2020.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Energías renovables
Inteligencia artificial
Modelos de pronóstico
Despacho económico
Integración en el sistema eléctrico
Uruguay
dc.subject.other.es.fl_str_mv ENERGIA EOLICA
dc.title.none.fl_str_mv Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales.
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description En Uruguay se tiene el 34.43% de la matriz energética de origen eólico. Dada la característica fluctuante del viento es necesario incorporar modelos de pronóstico de energía eólica, de modo de suministrar información para realizarse el despacho óptimo de energía en el sistema eléctrico. Este trabajo presenta los resultados de ocho modelos de pronóstico desarrollados, siendo cuatro en base a un híbrido de modelo numérico de mesoescala y regresión lineal (WRF-RL) y cuatro en base a modelo numérico de mesoescala y redes neuronales artificiales (WRF-RNA). Los resultados fueron evaluados para un total de 31 parques eólicos ubicados en Uruguay, y el modelo que mostró el mejor desempeño fue un modelo híbrido del tipo WRF-RNA. En un análisis del ciclo diario, considerando un pronóstico con la suma de potencia de todos los parques eólicos, los resultados muestran que los menores valores de sesgo (bias) fueron de los modelos en base a WRF-RNA, así como menores valores de error medio absoluto (entre 10% y 6.5%), compararado con el modelo WRF-RL (entre 14 % y 9 %).
eu_rights_str_mv openAccess
format article
id COLIBRI_5baedc3098d5b52c28ac6d733926d4a3
identifier_str_mv de Almeida Lucas, E., Gutiérrez Arce, A. y Camargo, S. "Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales". ENERLAC : Revista de Energía de Latinoamérica y el Caribe. [en línea]. v. 4, no. 1, pp. 32-43, 2020.
2631-2522
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/24818
publishDate 2020
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling de Almeida Lucas Everton, Universidad de la República (Uruguay). Facultad de Ingeniería.Gutiérrez Arce Alejandro, Universidad de la República (Uruguay). Facultad de Ingeniería.Camargo Sandro, Universidade Federal do Pampa (Unipampa).Uruguay2020-07-29T12:28:26Z2020-07-29T12:28:26Z2020de Almeida Lucas, E., Gutiérrez Arce, A. y Camargo, S. "Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales". ENERLAC : Revista de Energía de Latinoamérica y el Caribe. [en línea]. v. 4, no. 1, pp. 32-43, 2020.http://enerlac.olade.org/index.php/ENERLAC/article/view/117https://hdl.handle.net/20.500.12008/248182631-2522En Uruguay se tiene el 34.43% de la matriz energética de origen eólico. Dada la característica fluctuante del viento es necesario incorporar modelos de pronóstico de energía eólica, de modo de suministrar información para realizarse el despacho óptimo de energía en el sistema eléctrico. Este trabajo presenta los resultados de ocho modelos de pronóstico desarrollados, siendo cuatro en base a un híbrido de modelo numérico de mesoescala y regresión lineal (WRF-RL) y cuatro en base a modelo numérico de mesoescala y redes neuronales artificiales (WRF-RNA). Los resultados fueron evaluados para un total de 31 parques eólicos ubicados en Uruguay, y el modelo que mostró el mejor desempeño fue un modelo híbrido del tipo WRF-RNA. En un análisis del ciclo diario, considerando un pronóstico con la suma de potencia de todos los parques eólicos, los resultados muestran que los menores valores de sesgo (bias) fueron de los modelos en base a WRF-RNA, así como menores valores de error medio absoluto (entre 10% y 6.5%), compararado con el modelo WRF-RL (entre 14 % y 9 %).In Uruguay, 34.43 percent of the energy matrix comes from wind energy. Given the wind’s fluctuating characteristics it is a necessity to incorporate wind energy prediction models in order to give the proper information to achieve an optimal energy dispatch in the electrical system. This paper presents the results of the eight prediction models developed, with four being based on an hybrid of the mesoscale numeric model and linear regression (WRF-RL) and four based on the mesoscale numeric model and artificial neural networks (WRF-RNA). The results were evaluated for a total of 31 wind farms located in Uruguay, and the model that showed the best performance was the WRF-RNA one. When analyzing a daily cycle, considering a forecast with the power of all wind farms combined, the results show that the WRF-RNA models had not only the lowest bias value, but the lowest mean absolute error (between 10 and 6.5 percent) when compared to the WRF-RL models (between 14 and 9 percent).Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2020-07-28T03:15:05Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) DGC20.pdf: 6106054 bytes, checksum: cfdc134805d25c2b3e253d1b56f0af93 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-07-28T19:01:17Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) DGC20.pdf: 6106054 bytes, checksum: cfdc134805d25c2b3e253d1b56f0af93 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-07-29T12:28:26Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) DGC20.pdf: 6106054 bytes, checksum: cfdc134805d25c2b3e253d1b56f0af93 (MD5) Previous issue date: 202015 p.application/pdfesspaOrganización Latinoamericana de Energía (OLADE)ENERLAC : Revista de Energía de Latinoamérica y el Caribe, Vol.4, No. 1, pp. 32-43, Jun. 2020.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Energías renovablesInteligencia artificialModelos de pronósticoDespacho económicoIntegración en el sistema eléctricoUruguayENERGIA EOLICAPronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales.Artículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la Repúblicade Almeida Lucas, EvertonGutiérrez Arce, AlejandroCamargo, SandroLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/24818/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/24818/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838687http://localhost:8080/xmlui/bitstream/20.500.12008/24818/3/license_textd77747f0b79dbc4c411d2260a3d95cd2MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/24818/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALDGC20.pdfDGC20.pdfapplication/pdf6106054http://localhost:8080/xmlui/bitstream/20.500.12008/24818/1/DGC20.pdfcfdc134805d25c2b3e253d1b56f0af93MD5120.500.12008/248182020-07-29 09:28:26.095oai:colibri.udelar.edu.uy:20.500.12008/24818VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:32:43.333687COLIBRI - Universidad de la Repúblicafalse
spellingShingle Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales.
de Almeida Lucas, Everton
Energías renovables
Inteligencia artificial
Modelos de pronóstico
Despacho económico
Integración en el sistema eléctrico
Uruguay
ENERGIA EOLICA
status_str publishedVersion
title Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales.
title_full Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales.
title_fullStr Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales.
title_full_unstemmed Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales.
title_short Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales.
title_sort Pronóstico de energía eólica para horizontes temporales de corto plazo en base a modelo numérico de mesoescala y redes neuronales artificiales.
topic Energías renovables
Inteligencia artificial
Modelos de pronóstico
Despacho económico
Integración en el sistema eléctrico
Uruguay
ENERGIA EOLICA
url http://enerlac.olade.org/index.php/ENERLAC/article/view/117
https://hdl.handle.net/20.500.12008/24818