Genetic prediction in bovine meat production : Is worth integrating bayesian and machine learning approaches? A comprenhensive analysis
Resumen:
Genomic prediction is a still growing field, as good predictions can have important economic impact in both, agronomics and health. In this article, we make a brief review and a comprehensive analysis of classical predictors used in the area. We propose a strategy to choose and ensemble of methods and to combine their results, to take advantage of the complementarity that some predictors have.
2015 | |
Parametric Non parametric Genomic Selection Prediction Fusion Procesamiento de Señales |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/42653 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Accuracy of genomic predictions for carcass and meat quality traits in the Uruguayan Hereford breed.
Autor(es):: NAVAJAS, E.
Fecha de publicación:: (2018) -
Long-run relationship between economic growth and passenger air transport in Mexico
Autor(es):: Brida, Gabriel
Fecha de publicación:: (2014) -
Machine Learning methods for genome enabled prediction of complex traits : Benchmarking and robustness to marker elimination
Autor(es):: Elenter, Juan
Fecha de publicación:: (2021) -
Gene function prediction in five model eukaryotes exclusively based on gene relative location through machine learning
Autor(es):: Pazos Obregón, Flavio
Fecha de publicación:: (2022) -
Comparison of parametric models for video quality estimation : towards a general model
Autor(es):: Joskowicz, José
Fecha de publicación:: (2012)