Fractional iterated Ornstein-Uhlenbeck Processes
Resumen:
We present a Gaussian process that arises from the iteration of p fractional Ornstein–Uhlenbeck processes generated by the same fractional Brownian motion. When the values of the parameters defining the iteration are pairwise distinct, this iteration results in a particular linear combination of those processes. Although for H > 1=2 each term of the iteration is a long memory process, we prove that when p 2 the process obtained has short memory. We prove that the local Hölder index of the process is H, and obtain an explicit formula for the spectral density. We present a way to estimate the parameters and prove that the estimators are consistent and the results are asymptotically Gaussian. These processes can be used to model time series of long or short memory.
2019 | |
Fractional Brownian motion Fractional Ornstein-Uhlenbeck process Long memory processes. |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/28486 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
Resultados similares
-
Modelling a continuous time series with FOU(p) processes
Autor(es):: Kalemkerian, Juan
Fecha de publicación:: (2022) -
Predicción mediante modelos ARFIMA y FOU de energía afluente
Autor(es):: Kalemkerian, Juan
Fecha de publicación:: (2017) -
Prediction using ARFIMA and FOU models of affluent energy
Autor(es):: Kalemkerian, Juan
Fecha de publicación:: (2017) -
Finite element approximation of fractional Neumann problems
Autor(es):: Borthagaray, Juan Pablo
Fecha de publicación:: (2022) -
Propagation of radical ideas in societies with memory: competition between radical strength and social cohesion
Autor(es):: Vallejo Preste, Andrés Mario
Fecha de publicación:: (2021)